2017

Regime shifts and panarchies in regional scale social-ecological water systems

Lance Gunderson
Emory University

Barbara A. Cosens
University of Idaho

See next page for additional authors

Copyright ©2017 Lance Gunderson, Barbara A. Cosens, Brian C. Chaffin, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Follow this and additional works at: https://scholarworks.uni.edu/tpc_facpub

Part of the Plant Sciences Commons

Let us know how access to this document benefits you

Recommended Citation
Gunderson, Lance; Cosens, Barbara A.; Chaffin, Brian C.; Arnold, Craig A. (Tony); Fremier, Alexander K.; Garmestani, Ahjond S.; Craig, Robin Kundis; Gosnell, Hannah; Birge, Hannah E.; Allen, Craig R.; Benson, Melinda H.; Morrison, Ryan R.; Stone, Mark C.; Hamm, Joseph A.; Nemec, Kristine; Schlager, Edella; and Llewellyn, Dagmar, "Regime shifts and panarchies in regional scale social-ecological water systems" (2017). Tallgrass Prairie Center Faculty Publications. 2.
https://scholarworks.uni.edu/tpc_facpub/2

This Article is brought to you for free and open access by the Tallgrass Prairie Center at UNI ScholarWorks. It has been accepted for inclusion in Tallgrass Prairie Center Faculty Publications by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Authors

This article is available at UNI ScholarWorks: https://scholarworks.uni.edu/tpc_facpub/2
Regime shifts and panarchies in regional scale social-ecological water systems

ABSTRACT. In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises, but may also facilitate recovery; and constrain system transformation, but may also provide windows of opportunity in which transformation, and the resources to accomplish it, may occur. The framework is the starting point for our exploration of how law might play a role in enhancing the capacity of social-ecological systems to adapt to climate change.

Key Words: adaptive governance; cross scale dynamics; social ecological system; transformation

INTRODUCTION
Humans have been altering ecosystems to manage water resources for millennia. Circa 4000 years ago, water in dry Mesopotamia was collected in reservoirs, channeled via levees, and moved around the landscape via canals and allocated through the code of Hammurabi (Cech 2003). Similar practices have been continued to date in most, if not all, regional scale freshwater social-ecological systems in the continental United States. These water systems have been modified and managed to meet a variety of societal goals including water supply, flood control, energy, agricultural and other economic production, as well as a growing environmental demand.

We use the phrase social-ecological systems to describe complex systems of people and the water (Dietz et al. 2003). Such systems consist of highly controlled ecosystems and a social system that mediates its interaction with ecosystems through environmental management and governance. Prior to intensive development, these North American water systems were dynamic ecosystems—riverine, riparian, wetland, and terrestrial—that supported complex biodiversity. During the 20th century, development of management systems accelerated, as dams and levees were constructed to constrain flood effects and provide water and energy for human activity. Channelization and other constructs allowed for the movement of water to meet social demands for agriculture, urban development, and economic growth. Land-use changes in the drainage basins have resulted in shifts in water quantity and quality, which in turn has altered ecosystem structures and functions. In short, development of water resources has led to ecosystems that are highly controlled and managed to meet specific social goals. Although river development has enhanced the economic wealth of society, it has done so at the expense of ecosystem functions. Management of these systems has largely centered on controlling and stabilizing key ecological processes to achieve these multiple social objectives. This optimization of certain services from our river systems has left them vulnerable to climate change, with very little room to adapt as patterns and quantities of precipitation and temperature change.

1Department of Environmental Sciences, Emory University, Atlanta, GA, USA, 2University of Idaho, Institute for Waters of the West, 3College of Law, Moscow, ID, USA, 4Department of Society & Conservation, College of Forestry & Conservation, University of Montana, Missoula, MT, USA, 5Brandeis School of Law, Department of Urban and Public Affairs and Center for Land Use & Environmental Responsibility University of Louisville, Louisville, KY, USA, 6UCLA School of Law, Los Angeles, CA, USA, 7School of Environment, Washington State University, Pullman, WA, USA, 8U.S. Geological Survey, Western States and Territories, Department of the Interior, Washington, DC, USA, 9University of Utah, Salt Lake City, UT, USA, 10College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA, 11Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA, 12U.S. Department of Interior, Geological Survey, Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Nebraska, NE, USA, 13University of New Mexico, Albuquerque, NM, USA, 14Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA, 15School of Criminal Justice, Environmental Science and Policy Program, Michigan State University, East Lansing MI, USA, 16School of Government and Public Policy, The University of Arizona, Tucson, AZ, USA

Erratum: Craig Anthony (Tony) Arnold’s name was misspelled when this manuscript was originally published. It was corrected on 15 May 2017.
At this moment in time we observe growing interest in restoring a broad range of ecosystem services in our study basins. Restoration of ecosystem functions takes many forms, from recovery of endangered populations, restoration of vegetation and substrates in riparian and wetland zones, and ecosystem restoration. Given the onset of climate change a shift in focus is needed. The dynamic nature of ecosystems coupled with climate change renders restoration to historic conditions no longer possible. Furthermore, in a time of human domination of the planet, the viewpoint of our water-based ecosystems as separate and independent of society ignores reality, and thus at the same time, the loss of the breadth of ecosystem function due to optimization for 20th century services has placed these systems at risk. In contrast to the end points of optimization and restoration, we assert the need for reconciliation of ecosystem function with human dominance. Achieving reconciliation is not an ecological issue, a legal issue, an economic issue, nor a social issue. Rather it is a combination of all of these, which necessitates changes in both how we govern and manage these systems. It is also a time when water systems across North America are looking to re-engineer an aging water infrastructure with a view toward enhancing a broad range of social, economic, and ecological services. The uncertainty associated with dynamic systems, climate change, and the integration of multiple societal dependencies we suggest calls for new approaches, which has been described as adaptive governance (Dietz et al. 2003, Chaffin et al. 2014a).

Without integration of a deep understanding of both the legal landscape for water governance, its capacity for change, and the factors that lead to emergence of adaptive governance, we are unlikely to identify and implement the measures needed to prepare our water basins and the society that relies on them for governance capable of navigating the changes unfolding (Garmestani and Allen 2014). It is this integration that the Adaptive Water Governance (AWG) Project, the results of which are presented in this special feature, has sought to achieve.

THIS ARTICLE
We present an overview of seven basin assessments that form the backdrop for the efforts of the AWG Project. The six North American water basins that were chosen for basin assessment represent heavily regulated and developed social-ecological systems. The one Australian basin represents a free-flowing river system, yet one that is also within a federal system of regulation. We review the key components of the study basins and provide a brief summary of resilience assessments conducted in each system (Cosens et al. 2014, Cosens 2015). As such, the hope is to use this article for reference by the other articles in this special feature. The basin assessments show different trajectories (recovery, adaptation, transformation) characterize the histories of these social-ecological systems. We conclude with the role of governance trajectories and cross-scale interactions identified in the basins assessments in determining the capacity of the basins to navigate changing climate.

CASE STUDIES: ASSESSING RESILIENCE IN SOCIAL-ECOLOGICAL WATER SYSTEMS
In-depth assessments of six North American water basins (Fig. 1) and one basin in Australia have been published elsewhere (Arnold et al. 2014, Benson et al. 2014, Birge et al. 2014, Chaffin et al. 2014a, Cosens and Fremier 2014, Cosens et al. 2014, Gunderson et al. 2014, Cosens 2015). The basin teams have used a variety of approaches that build off earlier approaches to resilience assessment (Resilience Alliance 2010, Nemec et al. 2013), by adding assessment of governance and the role of law. In each assessment the question was posed as to the resilience of the basin’s social-ecological system to changing climate.

Fig. 1. Location of riverine and wetland social-ecological systems in the United State used to study interaction of ecological resilience and adaptive governance. (Base map from public domain image, http://www.wikiwand.com/en/List_of_rivers_of_the_United_States).

Broadly defined, climate is the long-term (decades to centuries) pattern of precipitation and temperature in a particular area (Intergovernmental Panel on Climate Change 2007). In regionalscale water systems, climatic patterns have been central to the design and management of such systems, and infrastructure and use allocation have been optimized on an assumption that the historic climate will persist. The climatic zones vary widely across the cases (Table 1). The Everglades has a subtropical savanna climate that is characterized by little seasonal change in temperature (rare freezing), with pronounced wet and dry seasons (Hela 1952), and the management system has evolved according to this annual cycle to control flooding during the wet season and supply water to agriculture, urban interests, and conservation areas during the dry season. Water basins in western North America experience substantial seasonal variability characterized by spring runoff from snowmelt (Mote et al. 2005), and water infrastructure and management is designed to even out the hydrologic cycle for flood control, hydropower, and irrigation (Cosens and Fremier 2014). These managed systems in the western U.S. are heavily reliant on natural storage of water in snowpack (Cosens et al. 2014). Yet a growing body of literature indicates that long-term changes in the hydrologic processes controlling these patterns in both the east and west are occurring, calling into question fundamental assumptions on which design
and management have been based (Milly et al. 2008). At the same time, the compromise of ecosystem functions through narrow
purposed engineering has reduced the latitude within which these
water systems may adapt without human intervention. The types
of events associated with climate change including greater
extremes in water supply will continue to test the resilience of the
coupled social-ecological system to respond and adapt to these
broad-scale changes. Understanding the dynamics of these
complex social-ecological systems is urgent because climate
change upsets the assumptions on which water infrastructure,
allocation, and protection have been based.

The basin assessments illustrate that with the onset of water
balance impacts from climate change some of the water supplies
relayed on in North America are close to irreversible thresholds.
Once these thresholds are crossed, the services provided by altered
ecosystems may threaten the adequacy of engineered
infrastructure potentially impairing existing water-based
economies. Basin assessment also made it clear that major
investment in conservation, green infrastructure, ecological
restoration, and reoperation of dams (Richter and Thomas 2007),
will be necessary to increase the adaptability of water-based
economies in the face of climate change. Achieving this will
require governance that is capable of navigating change as well
as itself evolving.

Assessment of adaptive governance facets (Table 2) illustrate an
increasing attention to public input and participation in resource
decision making. The recognition of treaty-based water and
fishing rights of Native Americans in both the Klamath and
Columbia rivers have led to increased participatory capacity from
formerly marginalized populations. The emergent collaborative
process among irrigators and Native American tribes in the
Klamath basin illustrates both the change in power distribution
and participatory capacity resulting from litigation and thus its
role in opening a window to collaborative processes. This in turn
has led to consideration of changes in basin management that
may enhance general resilience in the face of climate change by
focusing attention on the restoration of impaired ecosystem
services.

Anacostia River
The Anacostia River (Table 3) runs through Washington D.C.
then enters the Potomac River. The Anacostia has transitioned
from a natural to an urban watershed in which restoration efforts
will require intensive human intervention (Arnold et al. 2014).
The watershed is home to over one million people. Changes in
land use and other pollution sources have led to highly degraded
waters. Implementation of the Clean Water Act and subsequent
litigation has led to the emergence of local watershed
organizations and adaptive efforts to restore aesthetic and
recreational qualities in the watershed. The Anacostia governance
structures are multiscalar across space, i.e., federalist, and are
embedded in larger scale restoration programs (Chesapeake Bay).
Thus, the federal and regional levels provide much of the
knowledge and funding necessary for local capacity building and
response. Increased resources for the emerging local organizations
will be necessary to enhance adaptive capacity as the watershed
responds to climate change (Arnold et al. 2014).

Columbia River Basin
Federal investment in the Columbia River (Table 4) located in the
Pacific Northwest of the U.S. and Canada in the early 20th
century led to development of major dam infrastructure to
achieve the social objectives of flood control, navigation,
irrigation, and hydropower (Cosens and Fremier 2014). Thus,
regional investment by higher levels of government led to benefits
for certain sectors of society within the basin and its nearby urban
areas. Development also contributed to the precipitous decline in
salmon populations that rely on the river and its tributaries for
the freshwater portion of their life cycle. By the latter half of the
century, the assertion of rights by Native American tribes led to

Table 1. Characteristics of hydrologic basins in the United States used as case studies in assessing adaptive capacity, ecological resilience to rapid environmental change.

<table>
<thead>
<tr>
<th>Name</th>
<th>Basin Area (km²)</th>
<th>Average Flow (m³/s)</th>
<th>Maximum Flow (m³/s)</th>
<th>Climate Zone(s)</th>
<th>Political Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anacostia River</td>
<td>456</td>
<td>1.5</td>
<td>51</td>
<td>Humid Subtropical Climate</td>
<td>United States</td>
</tr>
<tr>
<td>Columbia River</td>
<td>668,000</td>
<td>7500</td>
<td>35,100</td>
<td>Semi-arid Steppe, Alpine, Marine West Coast</td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>State of Florida</td>
</tr>
<tr>
<td>Everglades Basin</td>
<td>28,205</td>
<td>12</td>
<td>80</td>
<td>Humid Subtropical Climate</td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semi-arid Steppe</td>
<td>States of Oregon and California</td>
</tr>
<tr>
<td>Klamath River</td>
<td>40,790</td>
<td>484</td>
<td>15,777</td>
<td>Tropical Wet/Dry</td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semidesert Dryalpine</td>
<td>States of Oregon and California</td>
</tr>
<tr>
<td>Middle Rio Grande River</td>
<td>72,000</td>
<td>41</td>
<td>707</td>
<td>Temperate rainforest</td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semiarid Steppe</td>
<td>States of Colorado and New Mexico</td>
</tr>
<tr>
<td>Central Plate River</td>
<td>219,916†</td>
<td>199</td>
<td>4,530</td>
<td>Semi-arid Steppe, Humid Continental</td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>States of Nebraska, Colorado, and Wyoming</td>
</tr>
</tbody>
</table>

†Area of entire basin, case study is of a smaller area.
their engagement in governance of fisheries. This major capacity building by formerly marginalized communities was made possible by the recognition of rights in federal court and funding for salmon recovery as a result of the U.S. Endangered Species Act. Although the economic goal of river development has been largely successful, its achievement through optimization has left the basin with limited room for adaptation and thus vulnerable to changing climate. In the Columbia River, the scale of governance extends to the international level. Current review of the treaty between the U.S. and Canada may be an opportunity for increasing management and infrastructure flexibility as well as reconciling certain ecosystem functions. (Cosens and Fremier 2014).

Florida Everglades

The Florida Everglades (Table 5) is a biologically rich, subtropical wetland that supplies water to about 8 million people, a multibillion dollar agriculture enterprise, and the conservation of biodiversity. Over the past century the system has successfully promoted economic and social development (Light et al. 1995). But like the Columbia River, this has come at an environmental cost measured in the listing of a dozen endangered species, and the imperiled Everglades National Park. The Everglades Act of 2000 called for implementation of adaptive management to recover this vast ecosystem. The Everglades system has many of the attributes necessary for adaptive governance such as identified thresholds, the authority to experiment, e.g., adaptive management, and a diversity of institutions. Nevertheless, adaptive governance is hindered by overly prescribed planning and litigation, leaving the social-ecological system of the Florida Everglades constrained in its capacity to adapt to climate change. In both the Columbia River Basin and the Florida Everglades, rigid management at higher levels and failure to balance stability of economic investment with flexibility to adjust management measures have formed impediments to implementation of a more flexible adaptive governance.

Klamath River Basin

The Klamath River Basin (Table 6) in southcentral Oregon and northern California has been the stage for a classic western water conflict between Native American tribes aligned with conservation organizations and commercial and recreational fishing interests, against irrigators served by a federal reclamation project and conservative local governments. The unique riverscape of the Klamath Basin supports irrigated agriculture in
Table 3. Social-ecological regimes in the Anacostia River Basin. A small watershed in the humid urban-suburban areas of Washington, D.C. and Maryland, the Anacostia River basin has transitioned from biologically rich natural ecology prior to European settlement to three periods of ecosystem degradation due to agriculture and navigation, industrialization, and urbanization, to the present regime dominated by restoration and green infrastructure activities, yet still influenced by previous regimes’ legacy effects and continued urban-development pressures. The major drivers of regime shifts from presettlement to the present are the following: (1) societal treatment of the basin’s waters, lands, vegetation, and wildlife as exploitable goods and services for short-term economic benefit (even in the current “green” regime in which improved water quality and restored lands are public goods and services); (2) shifts from weak to strong environmentalist values and activism; (3) changing ways that humans psychologically relate to the basin and its functions; (4) patterns of structural inequality, oppression, and discrimination, and movements to seek social and environmental justice; and (5) changes in governance institutions, including laws, to support and facilitate the dominant social values and policies of the time.

<table>
<thead>
<tr>
<th>Years</th>
<th>Presettlement to Mid-1600s</th>
<th>Mid-1600s to Mid-1800s</th>
<th>Mid-1800s to Early 1900s</th>
<th>1900s</th>
<th>Late 1900s to Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin Regime</td>
<td>Forests, Wetlands, and Flows</td>
<td>Agriculture and Navigation</td>
<td>Industrialization</td>
<td>Urbanization</td>
<td>Restoration and Green Infrastructure</td>
</tr>
<tr>
<td>Ecosystem States</td>
<td>Climate change (to warmer forest and aquatic systems); Ecological productivity and positive feedbacks among forests, wetlands, biodiversity, and clear-flowing streams</td>
<td>Deforestation; Wetland draining and filling; Farm soil exhaustion; Sedimentation; Increasingly sluggish, shallow, murky stream flows; Re-engineered river structure for navigation</td>
<td>Sewage flows to waterways; Water pollution from toxic industrial chemicals; Genesis of extensive fish cancers and extirpation (legacy effects in future periods); Exterminised fish, wildlife, submerging aquatic vegetation</td>
<td>De jure racial segregation; Dominance of industrial development (but start of significant urbanization)</td>
<td>Civil rights and environmental movements; Grassroots watershed activism; Recreational and environmental uses of waters and lands; Urban growth pressures</td>
</tr>
<tr>
<td>Social System States</td>
<td>Native American tribes created villages, limited farming, and trading; Exploration by Europeans for settlement</td>
<td>Slavery; Dominance of agriculture and commercial navigation; Poor farming practices</td>
<td>De jure racial segregation; Dominance of industrial development (but start of significant urbanization)</td>
<td>De facto racial segregation; Gentrification of urban neighborhoods; Dominance of urbanization and land development</td>
<td>Clean Water Act regulation and litigation; Policies for stormwater control, eco-restoration, and green infrastructure; Multiscale watershed partnerships; Civil rights and participatory governance</td>
</tr>
<tr>
<td>Institutions</td>
<td>Native American norms and culture</td>
<td>Land-clearance and development laws; Slavery</td>
<td>Weak pollution control laws; Property and contract rights (U.S. Constitution); De jure racial segregation</td>
<td>Private property rights; Zoning; Redevelopment policies and laws; Segregationist norms and policies; Environmental laws</td>
<td>watershed rights; Zoning; Redevelopment policies and laws; Segregationist norms and policies; Environmental laws</td>
</tr>
</tbody>
</table>

Middle Rio Grande Watershed

The Middle Rio Grande (Table 7) in central New Mexico is defined as the portion of the river that runs from Cochiti Dam near Santa Fe to Elephant Butte Reservoir south of Albuquerque. Native American Pueblos, communities that date to Spanish settlement, and Anglo-Americans hold irrigation water rights. The river is regulated to provide water downstream to both Texas and Mexico. Management has been modified to protect endangered aquatic species. The system is very close to a threshold because of a combination of the following: overallocation of water pursuant to the prior appropriation doctrine; lax management including lack of definition and enforcement of water rights; urban development of groundwater hydrologically connected to the river despite an absence of consideration of groundwater lag times in conjunctive management; separation of the river from the floodplain; and extended drought due to climate change that is not only reducing water supply but altering the upland forest ecosystem and fire regime. Rigid political adherence and economic dependency on the existing development places the watershed’s society in a vulnerable position. Transition without...
The table focuses on the U.S. portion of the basin except where international cooperation on river development is relevant. Eighty-five percent of the basin is in the United States.

<table>
<thead>
<tr>
<th>Years</th>
<th>Era</th>
<th>Ecosystem State Changes</th>
<th>Governance Shifts and Role of Law</th>
<th>Cross Scale Influences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-European Contact</td>
<td>Snowpack dominated runoff high seasonal variability; ~2 million year evolution of anadromous fish runs</td>
<td>~10,000 year indigenous salmon fishery</td>
<td>Salmon runs linked to hydrology. Fishery and intertribal trade tuned to salmon runs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>European Settlement Agricultural development; timber harvest; railroad; extinction of certain predators; commercial salmon harvest; first hatchery; inland shipping ports; locks for navigation</td>
<td>Federal and private eastern control on development. States enter union, tribal government depends on federal law. New federal law and policy leads to active land management and federal ownership will remain between 29% and 62% for each state in the basin</td>
<td>Floods, earthquake, and volcanic activity, ENSO, shape landscape, water supply, and connectivity influence the evolution of salmon populations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Federal law and policy leads to active land management and federal ownership will remain between 29% and 62% for each state in the basin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>River Development Federal and international dam development for hydropower, flood control, irrigation, and navigation alters the hydrograph, blocks 37% of the basin's spawning grounds, salmon populations plummet. Over 200 hatcheries. Effort to reduce erosion from agricultural lands Federal dam building as part of the New Deal increasing wealth and stability. Capacity building of local and state government. Treaty with Canada to develop dams leads to integration of electric grid and emergence of an economic region that contributes to WWII effort</td>
<td>Environmental Justice Investment in habitat restoration, particularly on tributaries Adjustment of dam operation to spill during smolt migration Variable improvement in salmon runs. Increasing upland and former floodplain development reducing connectivity Tribal activism and use of federal courts to establish treaty fishing rights leads to capacity building and increasing comanagement of the fishery. Rise of the environmental movement and major federal environmental statutes. Listing of 13 salmon and steelhead runs and 2 resident fish species.</td>
<td>Both the American Indian and the environmental movement begin as grass roots efforts Availability of a federal forum to litigate tribal rights and willingness of Congress to pass environmental legislation at the federal level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Assessing system resilience and ecosystem services in the Columbia River Basin. Situated in the Pacific Northwest of the United States and Canada, the Columbia River Basin has undergone two major transformations in recorded history as a result of social-ecological interaction and is on the cusp of a third as shown in the table below. The two transformations during the 19th and 20th centuries led to increasing optimization of key services through engineered development of the river system, which in turn led to substantial increases in wealth and well-being among the European settlers and their descendants in the region. Corresponding to this optimization and increase in human capital, is a general reduction in natural capital across the broad array of ecosystem services present prior to European settlement. This in turn both reduced the latitude for adaptation (one component of resilience) and hardened dependence on historic amount and timing of water supply, leaving the basin vulnerable to climate change. The third transition which began with a growing recognition of environmental values and the rising voices of formerly marginalized Native American tribes and First Nations, has not yet transformed the social-ecological system in the basin, but has the potential for reconciliation of the development needs of modern society with ecosystem function through integrated modernization of both the engineered system and its governance.

Platte River Basin

The water laws, policies, and infrastructure of the central Platte River Basin (Table 8) in south-central Nebraska have evolved during post-European settlement to optimize the needs of the watershed’s ecologic capacity to adapt and to reduce the degree of water dependency (Benson et al. 2014).

Lake Eyre and Great Artesian Basins, Australia

The assessment of the Lake Eyre Basin and its connections to the Great Artesian Basin in Australia provided an opportunity to apply the results of the initial phase of the AWG Project and was used to test the legal guidelines presented in this special feature (Cosens et al. 2017). The internally draining Lake Eyre Basin covers 1.14 million km² or roughly 15% of Australia, including much of Australia’s outback. The basin encompasses parts of New South Wales, Queensland, and the Northern Territory, and its terminal lake, Lake Eyre, or Kati Thanda, as it is known to the

Economic dislocation will require local leadership and capacity building as well as federal investment to restore some of the watershed’s ecologic capacity to adapt and to reduce the degree of water dependency (Benson et al. 2014).
Table 5. Resilience assessment of historical changes in the Florida Everglades. Situated in the southern portion of the Florida peninsula, the social-ecological system of the Everglades has undergone a series of transformations during the 20th century as indicated in the table below. Each transformation reflects a shift in the ecological components, social components, and/or governance regimes. At least five management regimes (Light et al. 1995) have been described, all of which were triggered by unforeseen environmental events or variation in hydrologic processes. Moreover, the transition among these different social-ecological configurations can be generally related to an erosion of system resilience. Such resilience is often linked to changes in slowly changing variables, either in the form of the loss of natural capital or increased vulnerability due to increasing forms of human capital.

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Regime Description</td>
<td>Predraining</td>
<td>Drainage</td>
<td>Flood Control</td>
<td>Water Supply</td>
<td>Ecosystem Restoration</td>
</tr>
<tr>
<td>Ecosystem State Changes</td>
<td>~6000 year dynamic wetland mosaic</td>
<td>Sawgrass marsh converted to agriculture</td>
<td>Decline in biodiversity</td>
<td>Nutrient induced vegetation change</td>
<td>Attempts to recover ecosystem functions</td>
</tr>
<tr>
<td>Governance Shifts</td>
<td>Federal Swamp Act of 1850 transferred wetlands to the state of Florida to drain Everglades for agriculture</td>
<td>Drainage districts forms</td>
<td>Federal state flood control district</td>
<td>Water supply concerns added to flood control</td>
<td>Ecosystem restoration, more litigation</td>
</tr>
<tr>
<td>Cross-scale Influences</td>
<td>Wetland ecology linked to regional hydrology</td>
<td>Canal/levee construction</td>
<td>Balkanization of hydrology, Local drainage</td>
<td>Drainage constrained, spread of invasive species, and nutrient-adapted vegetation, Droughts</td>
<td>All variables listed in previous regimes, plus new stakeholders and increased litigation</td>
</tr>
<tr>
<td>Small to Large</td>
<td>Sea level rise, cyclones, ENSO variation</td>
<td>Federal resources input began</td>
<td>Flood events,</td>
<td></td>
<td>Federal, state, and local support for ecosystem restoration</td>
</tr>
<tr>
<td>Large to Small</td>
<td>Biodiversity, speciation, Soil accretion Sea level</td>
<td>Human population increased</td>
<td>Land use designation (agriculture, conservation, water storage), Everglades as International Icon</td>
<td>Soil nutrient concentrations</td>
<td>All variables listed in previous regimes</td>
</tr>
</tbody>
</table>

```
Table 6. Resilience assessment of the Klamath River Basin social-ecological system (SES). The Klamath River Basin contains a unique river system originating in the arid interior of southcentral Oregon west of the Cascade Range and flowing through the mountainous rain shadow of northern California toward the Pacific Ocean. During the course of human history in the basin, the overall resilience of the basin to regime shift has oscillated according to interactions between forces of environmental governance and ecological responses, originating both from within and beyond the basin. To better understand the contemporary resilience of the Klamath River Basin to disturbance and sudden change, it is helpful to investigate and map historic patterns of system change through the adaptive cycle metaphor of SES dynamics. Below we employ the phases of the adaptive cycle to describe the dynamics of the most recent iteration of this cycle in the Klamath Basin. Although we recognize that several scales of nested cycles likely contribute to and further describe the dynamics portrayed here, the basin scale is a helpful unit of analysis to feedback to both social and ecological aspects of governance.

<table>
<thead>
<tr>
<th>Phase of the Adaptive Cycle</th>
<th>Exploitation (r)</th>
<th>Conservation (K)</th>
<th>Release (f)</th>
<th>Reorganization (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecosystem Modifications/ Dynamics</td>
<td>Resource allocation: drainage and irrigation of upper basin wetlands; fragmentation of Klamath River for hydropower; blocked river passage for migrating salmon; increased salmon harvest</td>
<td>Slow variables persist: persistent drought; decreased river flow; degradation of water quality; increase in toxic algal blooms; decreased habitat for aquatic and avian species</td>
<td>Collapse: fall-run Chinook salmon mortality event (2002); breeding populations of sucker fish drop below sustainable levels; anoxic conditions in river reservoirs; viable species habitat loss; avian mortality events</td>
<td>Potential for transformation: venues emerge for productive conflict resolution; personal transformation of basin leadership; federal, state, and NGO investment in negotiation venues; mobilization of adaptive capacity</td>
</tr>
<tr>
<td>Social Dynamics Influencing Governance Shifts</td>
<td>Marginalization: Euro-American land acquisition; privatization of property; removal of Native Americans to reservations</td>
<td>Slow variables persist: aggregation of small farms to agribusinesses; racial tensions between Euro- and Native Americans; slow gains in Native American sovereignty over land, water, and species; creation of fragmented cultures of environmental management</td>
<td>Crisis: dominant environmental laws collide (ESA, reclamation policy, federal-tribal trust responsibility); shutoff of irrigation water to the Klamath Reclamation Project; economic loss; antigovernment protest; racial violence</td>
<td>Fast: ecological collapse; social crisis</td>
</tr>
<tr>
<td>Controlling Variables</td>
<td>Fast: social and ecological marginalization</td>
<td>Slow: climate change; resource overuse; capitalism</td>
<td>Fast and slow: new configurations of adaptive capacity</td>
<td></td>
</tr>
</tbody>
</table>

and understanding of adaptive governance (Chaffin et al. 2014a, Chaffin and Gunderson 2016). Panarchy theory proposes that systems, defined at specific spatial and temporal scales, exhibit common patterns of change or trajectories over time.

Panarchy theory decomposes system dynamics into those that are scale dependent (such as the system trajectories) and cross scale interactions (Gunderson and Holling 2002). Types of interactions occur from larger scale systems (top down) and processes that scale up from smaller scales (bottom up). Such interactions do not occur continuously, but are associated with different phases of system change. Bottom-up ecological processes can result in instabilities as a result of cascading phenomena. Forest fires, pest outbreaks, and political revolutions and epidemics are all examples of such processes and are called revolts (Gunderson and Holling 2002). Top-down instabilities can occur as well; ecological examples include tropical cyclones in the Everglades, ENSO in western U.S. water basins; social examples include political elections, and implementation of a major change in regulation such as that resulting from federal listing of an endangered aquatic species in the basin. Another key cross scale interaction occurs when broader scale processes are critical during a system reorganization phase. One example is how shifts in functional forms of biodiversity that alter trophic relationships can result in regime shifts (Folke et al. 2004). The trajectory of ecological regime shifts occur after systems can depend critically on broad scale influences during reorganization.

Thus, a connection must be made between the system trajectories and the law related to system management and cross-scale interactions if social-ecological systems are to navigate change without major disruption. The following paragraphs discuss the identification of different trajectories within our basin studies and the role of cross scale interactions.

A common trajectory can be described as a growth and development path; infrastructure is built and operated to achieve particular societal goals (Holling and Meffe 1996). In the water case studies, these pathways involved the construction of dams, levees, canals to control and constrain water movement to meet social goals of flood control and water supply. During the periods of growth and development many formal governance structures were devised to oversee construction and implementation of infrastructure. Also, multiple authorities for resource allocation were specified. Much of the governmental aspect of governance needed during these periods focuses on coordination among redundant, overlapping management loci, multiple nodes of decision making and rules for participation by stakeholders. Among the case studies, the small and mighty rivers were tightly controlled and regulated during these eras of development. As a result, the social objectives of flood control and water diversion
Table 7. Resilience assessment of historical changes in the Middle Rio Grande. New Mexico’s Middle Rio Grande watershed includes the urban environments of Albuquerque, Santa Fe, as well as surrounding small towns, and rural agricultural communities. Dams and levees provided the necessary infrastructure for Anglo settlement, but resulted in loss of biodiversity. Pressures of urbanization, water supply constraints, and a history of a highly variable and unpredictable water availability are requiring increased adaptive capacity in the social system. The upper watershed forest system is undergoing regime change due to historic fire suppression followed by drought conditions. Long-term climate change projections indicate that the watershed will experience ongoing drought in the coming decades, with water shortfalls and extended dry intervals expected to become increasingly common.

<table>
<thead>
<tr>
<th>Years</th>
<th>< 1930s</th>
<th>1930s-1990s</th>
<th>1992-2010</th>
<th>2010-Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regime Description</td>
<td>Pre-Dams and Leves</td>
<td>Dams and Leves</td>
<td>Environmental Flows</td>
<td>Ecosystem Restoration</td>
</tr>
<tr>
<td>Ecosystem State Changes</td>
<td>Upper watershed frequent low intensity fire; valley floodplain braided, wide channel</td>
<td>Fire suppression in upper watershed</td>
<td>Decline in biodiversity due to channelization; riparian cottonwoods stop regenerating; high intensity fire, bark beetle infestation, and drought in upper watershed</td>
<td>Attempts to recover ecosystem functions</td>
</tr>
<tr>
<td>Governance Shifts</td>
<td>Pueblo and Hispanic communities; small scale infrastructure; share sharing</td>
<td>Anglo settlement; Middle Rio Grande Conservancy District Formed; prior appropriation doctrine</td>
<td>Listing of endangered species under the Endangered Species Act; U.S. Fish and Wildlife Service consulted over dam operations</td>
<td>Ecosystem restoration, more litigation of implementation of ESA</td>
</tr>
<tr>
<td>Cross Scale Influences</td>
<td>Upper watershed forest and seasonal flooding</td>
<td>Canal/levee Construction; Anglo settlement</td>
<td>Channelization Upper watershed forest supply</td>
<td>All variables listed in previous regimes, plus drought</td>
</tr>
<tr>
<td>Small to Large</td>
<td>Canal/levee Construction; Anglo settlement</td>
<td>State water allocation regime</td>
<td>Federal resources input began; Collaborative program</td>
<td>All variables listed in previous regimes</td>
</tr>
<tr>
<td>Large to Small</td>
<td>localized agreements</td>
<td>Human population increases</td>
<td>Land use and water allocation pressure due to continued population growth and drought</td>
<td></td>
</tr>
<tr>
<td>Slow variables</td>
<td>Biodiversity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For human use were achieved. During these phases, governance becomes focused on efficiency and cost control, and economic components become dependent on continued growth. Development and growth in all of the North American case studies relied on resources and capacity building from the federal level and management that is at the same time redundant, overlapping, and contested among federal, state, and local levels. As water management systems develop over time, policies and actions have been largely successful in meeting social objectives. This is a period or time of formal structures of governance, or institutionalization in law and government (Chaffin and Gunderson 2016). But it is also a period in which the growth and stability of higher levels of government might have facilitated preparation and development of tools to navigate change. Among these are cross-scale and cross-sector networks, and the use of resources to build local capacity as well as to re-engineer local water infrastructure to provide space for adaptation.

In all of the case studies, as systems developed over time, their resilience decreased making these systems more vulnerable to external forces (Gunderson and Holling 2002). In the six North American case studies, these external shocks came in the form of high or low rainfall periods, storm events, or other natural disasters, as well as the imposition of new regulations or assertion of rights through litigation that threatened existing economies. Each of these events was viewed as a crisis or instability, which then led to reflexive activities that influence the future system trajectories (Holling and Gunderson 2002).

Following such periods of instabilities, the systems reorganized and started new phases of growth and development. It was during the period of reorganization that system resilience is tested, and the period in which a new regime (as described above) can come into being. Such new regimes are characterized by a different set of processes and structures. These periods are when adaptive governance may emerge through formal and informal networks of response to the disturbance provided the appropriate structure, capacity, and processes are, at best, in place to facilitate its emergence, and at a minimum, not creating barriers (Table 2). This is also the period in which cross-scale interactions are critical.

During phases of instability and reorganization, new connections across loci of governance emerge or are strengthened. Examples include the formation of National Academy of Science committees in the Columbia River, or the Klamath Basin. Such emergent groups tend to be epistemic, and focus on resolving uncertainties that contributed to the resource surprise, and what are possible responses and adaptation to the unforeseen system dynamics. Cross-scale interactions may facilitate these connections through the provision of resources including technical support from higher levels of government.

For example, in the Klamath River Basin, after a period of partial ecological collapse and social crisis in the basin, a handful of leaders from different resource use and management interests in the basin came together under a series of opportune venues that emerged across the basin. These venues, and the desire of basin
Table 8. Resilience Assessment of Historical Changes in the Platte River Basin. Extending across portions of northeast Colorado, southeast Wyoming and central Nebraska, the social-ecological system of the Platte River Basin has undergone a series of transformations during the 19th and 20th century. Each transformation reflects a shift in the ecological components, social components and/or governance regimes. We describe three regimes, each of which were partially triggered by changes in system governance, with direct and indirect consequences for interactions among social-ecological components of the system.

<table>
<thead>
<tr>
<th>Years</th>
<th>Regime Description</th>
<th>Ecosystem State Changes</th>
<th>U.S. Governance Shifts</th>
<th>Cross Scale Influences</th>
</tr>
</thead>
<tbody>
<tr>
<td><1840</td>
<td>Pre Intensive European Settlement</td>
<td>Braided river, sandbars, high floodplain-river connectivity, spring flooding</td>
<td>Federal Government owns majority of land and sells it sparingly</td>
<td>Riverine wetlands provide habitat, nutrient cycling and flood buffering</td>
</tr>
<tr>
<td>1902-1997</td>
<td>Electrification and Damming Channelization of the river, loss of flood driven sandbars and wetlands</td>
<td>Homestead and Reclamation Act encourages settlement of the basin and "beneficial use" of water resources, respectively</td>
<td>Storage and hydroelectric project construction</td>
<td>Rocksies snowpack drives spring flooding</td>
</tr>
<tr>
<td>1997- Present</td>
<td>Platte River Recovery Project (PRRIP) Attempts to recover ecosystem functions, especially those surrounding basin’s endangered species, and required by the Endangered Species Act (ESA)</td>
<td>PRRIP (agreement among CO, NE, and WY) is approved by US Congress Increased litigation surrounding ESA</td>
<td>All variables listed in previous regimes, plus new stakeholders and litigation surrounding ESA</td>
<td>Agriculture begins to dominate the basin’s landscape. Surface and ground water depletion.</td>
</tr>
</tbody>
</table>

In addition, new forms of management or new forms of government may emerge separately or to institutionalize those that have informally arisen. One example is the creation of the South Florida Water Management District, following a severe drought in the Everglades (Light et al. 1995). Another example is the establishment of the Northwest Power and Conservation Council in the U.S. portion of the Columbia River, an interstate council authorized by Congress to engage with the public in regional electric power planning and enhancement of fish and wildlife within the basin.

Control and resources from larger scales may constrain subsequent system trajectories in ways that have been described as maladaptive or as a rigidity trap (Holling 2001). Thus, barriers to adaptive governance emergence during reorganization may occur when cross-scale interactions infuse resources to maintain the status quo rather than to facilitate innovation. This continuation of the growth cycle in the face of disturbance simply increases the vulnerability of the system to the next shock. At the other end of the spectrum, absence of a higher scale of government to provide resources for local innovation and reorganization following a disturbance may result in substantial social and economic dislocation.

Cases study regions, such as the Everglades social-ecological system, appear to be in a rigidity trap, and are quite resilient to change (Gunderson and Light 2006). Trapped systems have high institutional diversity (numerically and functionally) yet can only appear to change (for better or worse) following crises. Although polycentric, the Everglades governance system is hierarchical, rigid, and inflexible. Another indication is the inability to negotiate (or even discuss) many policy changes, much less attempt them. The result of large influxes of capital have sustained existing power relations in the system, leading to the current governance and management system being described as a rigidity trap (Gunderson et al. 2014). Another key characteristic of the systems perverse resilience is how novelty, experimentation, and uncertainty are confronted.

By using this framework to connect the understanding of complex system response in ecological systems to an understanding of the complex governance systems that mediate social-ecological system interaction, it becomes possible to chart a course more likely to assist society in the navigation of change. Moving from identification of the role of system trajectories and cross-scale interactions, i.e., panarchy, in the basins studied, to synthesis of the key lessons this framework and other theoretical constructs provide for understanding the barriers and opportunities for enhancing the adaptability of regulated water systems is the goal of this special feature.

SUMMARY

The six North American water basins that were chosen to investigate the interaction among ecosystems, legal systems, and
adaptive govenances all represent heavily regulated and developed social-ecological systems. Reviews of the historical development or trajectories of these systems reflect complex interactions among adaptive governance, ecosystem regimes, and the legal systems. The basin assessments show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The basin assessments indicated that complex interactions among the legal, governance, and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation.

Responses to this article can be read online at: http://www.ecologyandsociety.org/issues/responses.php/8879

Acknowledgments:

This work was developed under the Adaptive Water Governance Project, funded by the U.S. National Socio-Environmental Synthesis Center (SESYNC) under funding from the U.S. National Science Foundation, NSF DBI-1052875. The authors would like to thank Margaret Palmer and Jonathan Kramer of SESYNC for their belief in and support of the project. We would also like to thank all participants in the Adaptive Water Governance Team whose work is reflected in the articles in this special feature and without whom it would not have been possible. The Nebraska Cooperative Fish and Wildlife Service, and the Wildlife Management Institute are jointly supported by a cooperative agreement among the U.S. Geological Survey, the Nebraska Game and Parks Commission, the University of Nebraska, the U.S. Fish and Wildlife Service, and the Wildlife Management Institute.

LITERATURE CITED

