2018

Exploration of Potential Treatments of Bronze Disease Through SEM/EDX Analysis

Nicole Bishop
University of Northern Iowa, bishopn@uni.edu

Brian Pauley
University of Northern Iowa, paulebac@uni.edu

Follow this and additional works at: https://scholarworks.uni.edu/chemanaly_fa2018

Part of the Chemistry Commons

Let us know how access to this document benefits you

Recommended Citation
https://scholarworks.uni.edu/chemanaly_fa2018/3

This Poster is brought to you for free and open access by the Chemical Analysis Class Projects at UNI ScholarWorks. It has been accepted for inclusion in Fall 2018 - Chemical Analysis Class Projects by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Exploration of Potential Treatments of Bronze Disease Through SEM/EDX Analysis

Nicole Bishop, Brian Pauley

Bronze Disease
- Corrosion of bronze artifacts
- Disease begins with chloride containing compounds.\(^1\)
- Unsure what exactly the chemical composition of the disease is.\(^2,3,5\)

Artifact Remediation
- Need cleaning method to preserve these artifacts
- Previous methods were tested using visual cues
- Sodium sesquicarbonate was used to neutralize the chlorinated compounds.\(^2,3,4\)

SEM/EDX Methodology
- A beam of electrons is created using a filament and is focused through the use of magnetic lenses
- As the electrons strike the surface they can be scattered many ways

Post-Treatment EDX Mapping

Treatment Steps
1. Pretreatment Sample
2. Sample with Applied Treatment
3. Treatment After 48 h
4. Treatment After 96 h
5. Treatment After Methanol Scrub

The above EDX maps are of a portion of the cleaned bronze from step 5 of the treatment described previously. The original SEM images show some microcracking left from the progression of the bronze disease. There is still chlorine present on the sample particularly on the “dragon’s head” portion of the image. This shows that a naked eye analysis of the effectiveness of a treatment doesn’t necessarily mean that the bronze disease has been fully removed.

Conclusions
The sodium sesquicarbonate was shown to remove the diseased patina and chlorides from the sample this removal uncovered micro fractures left from the bronze disease. This treatment is both cost effective and safe for curation staff. Further testing of this treatment on other materials, such as leather, that the artifact might be made of would be required before applying them to the museum artifacts.

Acknowledgements
Thank you to the University of Northern Iowa’s Chemistry and Biochemistry Department and the University of Northern Iowa Museum and Nathan Arndt for allowing us to use their museum artifacts for our research.

References

Sources of the Elemental Constituents
- **Copper (Cu)** — Part of the Bronze Alloy\(^6\)
- **Aluminum (Al), Silicon (Si), and Zinc (Zn)** — Part of the Bronze Alloy\(^6\)
- **Potassium** — Possibly From of the Salts used in the tanning of the leather (KCl)\(^7\)
- **Chlorine** — Makes up the bulk of the diseased portions Cl\(^-\) possibly originated from the use of salts in the tanning process (KCl)\(^7\)
- **Sulfur** — Could also be a remnant from the leather tanning process\(^8\)