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Abstract

The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute
to the high mortality rate for pancreatic cancer (PC), which has a five year survival rate of less than 5%. Improved screening
for earlier diagnosis, through the detection of diagnostic and prognostic biomarkers provides the best hope of increasing
the rate of curatively resectable carcinomas. Though many serum markers have been reported to be elevated in patients
with PC, so far, most of these markers have not been implemented into clinical routine due to low sensitivity or specificity.
In this study, we have identified genes that are significantly upregulated in PC, through a meta-analysis of large number of
microarray datasets. We demonstrate that the biological functions ascribed to these genes are clearly associated with PC
and metastasis, and that that these genes exhibit a strong link to pathways involved with inflammation and the immune
response. This investigation has yielded new targets for cancer genes, and potential biomarkers for pancreatic cancer. The
candidate list of cancer genes includes protein kinase genes, new members of gene families currently associated with PC, as
well as genes not previously linked to PC. In this study, we are also able to move towards developing a signature for
hypomethylated genes, which could be useful for early detection of PC. We also show that the significantly upregulated
800+ genes in our analysis can serve as an enriched pool for tissue and serum protein biomarkers in pancreatic cancer.
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Introduction

Pancreatic cancer (PC) is a highly lethal malignancy, and

patients with PC have a 5-year survival rate of less than 5% [1].

Thus, even though the incidence of breast cancer is estimated to

be 5 times greater than PC, the annual death rates are comparable

[2]. In nearly 95% of PC patients there is neither an associated

family history of PC nor of diseases known to be associated with an

increased risk of PC [3]. The lack of specific symptoms at early

tumor stages, together with a high biological aggressiveness of the

tumor and resistance to cytotoxic drugs all contribute to the high

mortality rate of PC.

This study has been motivated by two reasons. The First is to

contribute to the understanding of the fundamental disease

etiology of PC by identifying novel candidate cancer genes in

pancreatic cancer. The mutations found in a cancer cell genome

have generally accumulated over the lifetime of the cancer patient

and usually number between 1,000–10,000 [4]. For PC, exome

sequencing has revealed that the average number of mutations in

exons is about 60 [5]. Driver mutations [6] confer growth

advantage on the cells carrying them and are positively selected for

during the evolution of a cancer. It has been suggested that

common adult epithelial cancers require the activation of between

5–20 such driver genes [7,8]. The identification of driver

mutations and the cancer genes that they alter has been a central

aim of cancer research; so far, about 500 (2%) of the 22,000

protein-coding genes in the human genome are reported to show

recurrent mutations in cancer with strong evidence that these

contribute to cancer development [9] (http://www.sanger.ac.uk/

genetics/CGP/Census/). However, studies in mice have suggested

that more than 2,000 genes, when appropriately altered, may have

the potential to contribute to cancer development [10] indicating

that the search for cancer genes is far from over. A comprehensive

treatment protocol for pancreatic cancer would require first, the

identification of all the cancer genes, and next, the ability to

modulate the function of these genes through therapeutic

intervention. In recent years, the proteins altered by driver

mutations have become targets for successful anticancer drug

development [11–13].

The second impetus for this study comes from the paucity of

biomarkers in PC [14,15]. Improved screening for earlier

diagnosis, through the detection of diagnostic and prognostic

biomarkers, provides the best hope of increasing the rate of

curatively resectable carcinomas. For example, analysis of

sequence data has suggested that the time frame from the

initiation of the pancreatic tumor to the development of metastatic

subclones could be more than ten years [16]. Though many serum

markers has been reported to be elevated in patients with

pancreatic cancer, so far, most of these markers have not been

implemented into clinical routine due to low sensitivity or

specificity [14] with the exception of CA 19-9 [17].

Meta-analysis of microarray datasets consists of using statistical

techniques to combine results from several studies in order to
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increase statistical power and generalizability compared with any

single study [18]. This addresses, to some extent, the issues of

biological and technical variations, which can have a significant

effect on microarray measurements [19]. The previous meta-

analysis of microarray datasets on PC was conducted nearly a

decade ago by Grutzman and colleagues [20], and the analysis was

limited to a few thousand genes.

In this study, we examined the differential gene expression

patterns that are replicated across datasets, to create a ranked list

of genes overexpressed in PC. We focused our attention only on

genes that are overexpressed, since about 80% of cancer genes are

dominant acting [4] through either overexpression or constitutive

activation of gene product. In this study, we have detected

hundreds of genes that were significantly upregulated in pancreatic

cancer. The list of overexpressed genes include genes that have not

been previously associated with PC as well as new members of

gene families that have been associated with PC. We have also

identified tens of kinase-encoding genes overexpressed in pancre-

atic cancer, which are potential therapeutic targets for PC. In this

study, we are also able to move towards developing a signature for

hypomethylated genes, which could be useful for early detection of

PC. We also find that about a third of the putative protein serum

biomarkers thus far identified for PC are, in fact, significantly

overexpressed in our analysis, indicating that our results could

serve as a resource for further experimental studies, in the quest for

effective biomarkers for PC.

Materials and Methods

Pancreatic cancer microarray datasets
Nine pancreatic cancer datasets in the Oncomine database [21]

that contained a differential analysis of pancreatic cancer vs.

normal samples, were included this study (Table 1). Oncomine

[21] is the most comprehensive cancer-specific database, currently

containing 628 datasets investigating 35 tumor types (Oncomine

4.4 Research Edition). The advantage of using datasets from

Oncomine is that prior to inclusion in Oncomine, the microarray

datasets (obtained from public resources such as Stanford

Microarray Database and the NCBI Gene Expression Omnibus

or literature sources) are reviewed by a panel of experts to ensure

that they meet certain quality standards [22].

Initial screening of microarray datasets
Prior to combining microarray datasets from different sources, a

further quality check was performed on the datasets using the

program Venn Mapper [23]. Venn mapper can identify significant

similarities between heterologous microarray datasets, by compar-

ing the overlap of differentially expressed genes and calculating a

statistical significance using z-values. Briefly, a 2-fold cutoff is used

to determine the upregulated genes in a microarray dataset. A list

of upregulated genes is established for each microarray, and all

pair-wise (except self comparisons) combinations of lists are

compared for matching gene-identity (i.e. HUGO gene names).

The number of genes commonly upregulated, Robserved, in any two

experiments is determined, and a z-value is calculated to

determine whether this number is statistically significant. For

two microarrays A and B, the z-value is calculated as follows:

z~
Robserved{R�e�x�pected

s
~

Robserved{nBPAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nBPA(1{PA)

p

R = number of genes upregulated in both A and B

nB = Total number of genes upregulated in B

PA = Probability of a gene being upregulated in A

Microarrays were clustered based on z-value profiles, and any

outliers were identified, and omitted from further analysis. An

absolute z-value of .1.96 is equivalent to a p-value of ,0.05.

Obtaining ranked lists of upregulated genes
To identify differentially expressed genes across multiple

datasets, we employed a non-parametric ‘rank product’ method

implemented in the RankProd package [24,25]. RankProd is a

statistically rigorous but biologically intuitive algorithm, which has

been shown to be robust against noise in microarray data [26,27].

RankProd has been shown to have higher sensitivity and specificity

compared to other types of meta-analytic tools for microarrays

[28]. A list of upregulated genes are selected based on a

conservative estimation of the percentage of false positive

predictions (pfp), which is also known as the false discovery rate.

As recommended, a pfp value of ,0.15 [25] was used to set the

threshold for genes that are significantly upregulated.

Results and Discussion

Congruency between microarray datasets
The program Venn Mapper [23] was used to perform an initial

screening, to determine any broad inconsistencies that exist

between the microarray datasets. Analysis was carried out on

nine different datasets, and all-to-all pairwise z-values are given in

Table 2. Two outliers were identified by this method, namely,

Buchholz Pancreas (Pancreatic Ductal Adenocarcinoma) and

Buchholz Pancreas (Pancreatic Intraepithelial Neoplasia). The

low z-values associated with these datasets indicate a lack of

significant correlation between upregulated genes in these datasets,

when compared with other datasets. Hence, these two datasets

were omitted from further analyses. While we are uncertain about

the source of this incongruency, we note that the Buchholz

datasets were the only datasets obtained without the use of

standard (commercially available) platforms. Another dataset,

Logsdon Pancreas, was also omitted due to the low number of

genes in the dataset (5,338, compared to an average of 16,652

genes for the rest of the data (Table 1)).

Below, we organize our results and discussion into four discrete

sections that include identification of upregulated genes, functional

analysis of upregulated genes, identification of a genetic signature

for hypomethylation in PC, and identification of potential tissue,

serum and matrix metalloproteinase biomarkers in PC.

Identification of upregulated genes
RankProd [24] yields a list of genes ranked by percentage of

false positive prediction (pfp) value (see methods). Of the 5590

genes that were upregulated by at least two fold, 827 genes are

found to be significantly upregulated when using a pfp threshold of

,0.15 [25] (Table S1).

Table 3 provides a list of the top twenty-five ranked genes using

the RankProd program. As expected, most genes have well-

established associations with pancreatic and other cancers. Some

well-known examples include MUC4 [29], CEACAM5/6 [30],

S100P [31], CLDN18 [32], KRT19 (CK19) [33] and COLA1/2

[34]. There are, however, some notable exceptions such as

AHNAK2, CTHRC1, IGHG3 and EPPK1, which do not have a

known role in cancer. Hence, these genes can be potential new

leads for cancer genes, and are discussed next.

AHNAK2 is a significantly upregulated gene in PC (175-fold),

but has not been directly associated with any cancer, to our

knowledge. The mRNA is reported [35] to be alternatively spliced

to produce three isoforms, and the canonical sequence is inferred

to be targeted to the nucleus. The AHNAK family of scaffold PDZ

New Molecular Targets in Pancreatic Cancer
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proteins consists of two large proteins (600–700 kD), AHNAK

(desmoyokin) and AHNAK2 [36]. AHNAK has been associated

with several muscular diseases, including cardiomyopathy and

limb-girdle muscular dystrophy, and this effect is believed to be

mediated through its association with the b-subunit of cardiac

Ca(v) calcium channel [37]. AHNAK & AHNAK2 have also been

shown to be components of the costameric network, associated

with linking of the extracellular matrix to the cytoplasmic

microfilament system [38]. Experiments on metastatic human

tumor cell lines [39] have shown that knockdown of AHNAK

resulted in pseudopod retraction, inhibition of cell migration and

reversion of mesenchymal-epithelial transition (MET). It is likely

that AHNAK and AHNAK2 were both affected by these

knockdown experiments. Our results suggest that the family of

AHNAK proteins, particularly AHNAK2, merit experimental

scrutiny regarding their possible role in carcinogenesis, especially

in PC.

CTHRC1 (collagen triple helix containing 1) is a 30 kD

secreted protein that has the ability to inhibit collagen matrix

synthesis, and is highly expressed during skin wound healing.

Tissue repair and carcinogenesis are linked [40] and CTHRC1

has been associated with a variety of tumors including melanoma

[41], breast cancer [42], colorectal cancer [43] and most recently,

gastric cancer [44]. However, there has only been one report that

links CTHRC1 with PC, where higher expression of CTHRC1

was observed in a screen of solid tumor cell lines including PC

[41]. There is evidence that CTHRC1 expression is associated

with cancer tissue invasion and metastasis in breast cancer [42]

and gastric cancer [44]. Given the high level of upregulation of

CTHRC1 (.1,000-fold) that was observed in this study, we

hypothesize CTHRC1 to be an excellent candidate for experi-

mental evaluation as a potential biomarker for PC.

IGHG3 (Immunoglobulin heavy constant c-3) is a secreted

antigen binding protein not previously implicated in pancreatic

cancer. Our analysis (see next section) indicates that PC is

associated with dysfunction of the immune system. IGHG3 is also

a component of the top network associated with the cohort of 827

overexpressed genes, which is shown in Figure 1.

Table 1. Pancreatic Cancer Microarray Datasets Included in the Study.

Dataset Name* Cancer Type Genes** Platform Dataset Summary*

Badea Pancreas Pancreatic Ductal Adenocarcinoma 19,574 Human Genome U133
Plus 2.0 Array

Paired pancreatic ductal
adenocarcinoma (n = 39) and normal
pancreas (n = 39) samples from 36
patients were analyzed; three patients
were analyzed in duplicate.

Buchholz Pancreas Pancreatic Ductal Adenocarcinoma 15,725 Human Genome Oligo-Set-
Version 2.0 (Operon, Germany)

Eight (8) pancreatic ductal
adenocarcinoma and 6 normal
pancreatic duct samples were analyzed.

Buchholz Pancreas Pancreatic Intraepithelial Neoplasia 15,736 Human Genome Oligo-Set-
Version 2.0 (Operon, Germany)

Twenty-four (24) pancreatic
intraepithelial neoplasia and 6 normal
pancreatic duct samples were analyzed.

Grutzmann Pancreas Pancreatic Ductal Adenocarcinoma 17,782 Human Genome U133A Array,
Human Genome U133B Array

Fourteen (14) microdissected pancreatic
ductal adenocarcinoma and 11 normal
pancreatic duct samples were analyzed.
Sample data includes type, age, grade,
TNM stage, and sex.

Ishikawa Pancreas Pancreatic Ductal Adenocarcinoma 17,782 Human Genome U133A Array,
Human Genome U133B Array

Twenty-four (24) pancreatic ductal
adenocarcinoma and 25 normal
pancreatic duct samples were analyzed.
Sample data includes type, age, atypical
cell proportion, clinical stage,
cytological grade, and sex.

Iacobuzio-Donahue
Pancreas 2

Pancreatic Ductal Adenocarcinoma 14,361 Non standard Fourteen (14) pancreatic carcinoma cell
lines, 17 primary pancreatic ductal
adenocarcinoma samples of various
histologies, and 5 normal pancreas
samples were analyzed.

Logsdon Pancreas Pancreatic Adenocarcinoma 5,338 HumanGeneFL Array Ten microdissected adenocarcinoma, 7
pancreatic cancer cell lines, 5
pancreatitis, and 5 normal pancreas
samples were analyzed. Sample data
includes type and cell line name.

Pei Pancreas Pancreatic Ductal Adenocarcinoma 19,574 Human Genome U133 Plus
2.0 Array

Thirty-six (36) pancreatic carcinoma and
16 paired normal samples, for a total of
52 samples, were analyzed. Sample data
includes age and sex.

Segara Pancreas Pancreatic carcinoma 12,684 Human Genome U133A Array Eleven (11) pancreatic adenocarcinoma
samples and six (6) adjacent normal
pancreas samples from 12 patients were
analyzed.

*As identified by the Oncomine database.
**Number of genes probed.
doi:10.1371/journal.pone.0093046.t001
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Table 2. Pairwise z-values* Indicating Congruency between Upregulated Genes.

Name Badea1 Buch_DAC2 Buch_Intra3 Grutzmann4 Iacobuzio5 Ishikawa6 Logsdon7 Pei8

Buch_DAC 0.6

Buch_Intra 0.2 17.6

Grutzmann 9.7 20.2 20.6

Iacobuzio 9.7 20.1 20.6 5.2

Ishikawa 4.4 20.6 20.6 7.8 2.1

Logsdon 14.9 0.1 20.9 8.7 9.5 1.3

Pei 20.8 20.6 21.5 12.4 12.3 4.2 13.9

Segera9 17.5 0.7 0.4 7.2 8.2 6.1 11.5 12.7

*A z-value of .1.96 indicates a p-value of ,0.05.
1Badea Pancreas (Pancreatic Ductal Adenocarcinoma).
2Buchholz Pancreas (Pancreatic Ductal Adenocarcinoma).
3Buchholz Pancreas (Pancreatic Intraepithelial Neoplasia).
4Grutzmann Pancreas (Pancreatic Ductal Adenocarcinoma).
5Iacobuzio-Donahue (Pancreatic Adenocarcinoma).
6Ishikawa Pancreas (Pancreatic Ductal Adenocarcinoma).
7Logsdon Pancreas (Pancreatic Adenocarcinoma).
8Pei Pancreas (Pancreatic Ductal Adenocarcinoma).
9Segera Pancreas (Pancreatic Carcinoma).
doi:10.1371/journal.pone.0093046.t002

Table 3. A List of the 25 Most Highly Ranked Upregulated Genes in Pancreatic Cancer.

Gene* Gene Function

AHNAK2 Unknown; a component of the costameric network

CDH3 A calcium-dependent cell adhesion molecule.

CEACAM5 Cell surface glycoprotein that plays a role in cell adhesion and in intracellular signaling; binds with another CEACAM to function.

CEACAM6 A cell adhesion molecule; mediates cell adhesion by binding with another CEACAM (21, 25, and 26 are most common).

CLDN18 Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity

COL11A1 This gene encodes one of the two alpha chains of type XI collagen, a minor fibrillar collagen.

COL1A1 Type 1 collagen is a fibril forming collagen found in most connective tissue; alpha chain one.

COL1A2 Type 1 collagen is a fibril forming collagen found in most connective tissue; alpha chain two.

CTHRC1 May play a role in the cellular response to arterial injury through involvement in vascular remodeling. (secreted)

CTSE A gastric aspartyl protease that functions as a disulfide-linked homodimer.

EPPK1 Unknown. May play a role in supporting the intermediate filaments

FN1 Fibronectin is involved in cell adhesion and migration processes including embryogenesis, wound healing, blood coagulation, host
defense, and metastasis. (secreted)

GPRC5A Unknown. May be involved with the interaction between retanoic acid and the G protein sigaling pathway.

IGHG3 Unknown; Immunoglobulin heavy chain gamma 3

KRT19 Involved in the organization of myofibers. Together with KRT8, helps to link the contractile apparatus to dystrophin at the costameres of
striated muscle.

MMP11 Weakly degrades structural proteins of the ECM.

MUC4 Mucins are glycoprotein that play a role in the protection of epithelial cells. Implicated in renewal and differentiation.

OLFM4 An antiapoptotic factor that promotes tumor growth and is an extracellular matrix glycoprotein that facilitates cell adhesion.

POSTN Induces cell attachment and spreading and plays a role in cell adhesion.

S100P S100 proteins are involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation.

SERPINB5 Unknown. Exhibits no serine protease inhibitory activity functions as a tumor suppressor of mammary tumors

SLC6A14 A member of the solute carrier family; transports both neutral and cationic amino acids

VCAN This protein is involved in cell adhesion, proliferation, migration and angiogenesis and plays a central role in tissue morphogenesis and
maintenance

THBS2 A disulfide-linked homotrimeric glycoprotein that mediates cell-to-cell and cell-to-matrix interactions

COL3A1 Pro-alpha1 chain of type III collagen, a fibrillar collagen that is found in extensible connective tissue.

*Gene names are given according to the HUGO Gene Nomenclature Committee (HGNC).
doi:10.1371/journal.pone.0093046.t003
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Epiplakin belongs to the plakin family of cytolinker proteins that

are associated with the junctional complexes and the cytoskeleton.

Epiplakin is rather an unusual plakin in that it consists solely of

plakin repeats organized into 13 plakin repeat domains (PRD’s)

and does not contain a plakin domain characteristic of other

plakins. There is evidence to suggest that Epiplakin associates with

keratin networks during wound healing [45].

Functional analysis of the upregulated genes
We identified important functions, networks, and pathways

relevant to the 827 significantly upregulated genes using IPA

(www.ingenuity.com). A comprehensive analysis of the 827

upregulated genes is shown in Table S1.

The most significant biological functions associated with the 827

upregulated genes are cellular movement, cellular growth and

proliferation, cell death and survival, cellular development and

cell-to-cell signaling and interaction (Figure 2, Table S2).

Dysregulation of these functions are associated with cancer and

metastasis, reiterating the importance of this geneset to PC. A

pathway analysis provided insights into some of the molecular

mechanisms important in PC. The five most significant pathways

associated with the 827 upregulated genes included integrin

signaling (p-value = 1.72610213), also observed by Grutzmann et

al. [20], granulocyte adhesion and diapedesis (p-val-

ue = 4.08610211), agranulocyte adhesion and diapedesis (p-

value = 9.43610210), leukocyte extravasation signaling (p-val-

ue = 1.6261029), and virus entry via endocytic pathways (p-

Figure 1. Top scoring network associated with the upregulated genes in PC. TGFB1 forms a hub node in the network. IGHG3 (highlighted in
blue color) is one of the top twenty-five genes that is potentially important for pancreatic cancer.
doi:10.1371/journal.pone.0093046.g001
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value = 1.7161028) (Figure 3, Table S3). These results indicated

that PC is significantly associated with inflammation and immune

mechanisms. In fact, it has been shown that cancer immunosup-

pression often favors tumor progression and metastasis by

constituting an immunosuppressive network in which several

tumor-derived soluble factors such as interleukin-10, transforming

growth factor beta (TGFB) and vascular endothelial growth factor

play central roles [46]. In the top network identified, TGFB1 is the

hub gene (Figure 1). TGFB1 encodes a member of the TGFB

family of cytokines, which are multifunctional peptides that

regulate proliferation, differentiation, adhesion, migration, and

other functions in many cell types. This gene has been shown to be

frequently upregulated in tumor cells, and is an important target

for cancer therapy [47–51].

The second most significant network associated with the

upregulated genes is involved in cell cycle, cellular movement,

and cancer (Figure 4). In this network, NF-kB complex acts as a

major hub, which functions as a regulator of genes that control cell

proliferation and cell survival. Incorrect regulation of NF-kB has

been linked to cancer, inflammatory and autoimmune diseases

[52,53]. This network again suggests that PC could be closely

correlated with immunological disorder [54,55]. Upregulated NF-

kB turns on the expression of genes that keep the cell proliferating,

and protect the cell from conditions that would otherwise cause it

to die via apoptosis. In fact, it has been shown that NF-kB is

constitutively active in various types of human tumors [56–60]. In

addition, there are two interesting regulatory modules identified in

this network. The first module is made up of two E2F family genes

(E2F7, E2F8), ECT2 and RACGAP1. These genes form

autoregulatory loops, and regulate each other. Notably, the three

genes E2F7, E2F8 and ECT2 constitutively regulate RACGAP1,

which binds to Rho GTPases (Figure 4), suggesting that this

module functions in the regulation of cytokinesis in a cell cycle-

dependent manner. Another module involves the glutathione

peroxidase (GPX) family genes that encode an enzyme family with

peroxidase activity, whose main biological role is to protect the

organism from oxidative damage. Upregulation of GPX family

genes may be associated PC and other cancers [61–64], suggesting

an important link between oxidatively-induced DNA damage and

cancer development.

Identification of the upregulated kinase-encoding genes
Furthermore, we extracted the genes encoding protein kinases

from the 827 upregulated genes. Table 4 presents the 26 kinase-

Figure 2. Important biological functions and diseases associated with genes upregulated in PC.
doi:10.1371/journal.pone.0093046.g002
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encoding genes. It has been known that many kinase-encoding

genes are upregulated in cancer, and development of anticancer

drugs that inhibit overexpression of protein kinases has been an

active area of research. In fact, effective drugs have already been

developed to target some of the protein kinases. For example,

CDK1 encodes a member of the Ser/Thr protein kinase family,

which is a catalytic subunit of the highly conserved protein kinase

complex known as M-phase promoting factor. The protein plays a

key role in G1/S and G2/M phase transitions of eukaryotic cell

cycle, and the phosphorylation and dephosphorylation of this

protein play important regulatory roles in cell cycle control [65].

Some CDK1 kinase inhibitors have been developed for clinical or

experimental purposes - AZD 5438, (R)-CR8, (R)-DRF053

dihydrochloride, Kenpaullone, NU 2058, and Ro 3306 (Tocris

Bioscience, www.tocris.com), and ZK 304709 and Terameprocol

[66].

LCK is a tyrosine-protein kinase that is found inside lympho-

cytes of the immune system, and involved in immune signaling

pathways. Dasatinib, a small-molecule protein tyrosine kinase

inhibitor and anticancer drug, can inhibit LCK activity in T-cell

activation and proliferation [67,68]. MET is a proto-oncogene

that encodes the hepatocyte growth factor receptor protein [69],

which possesses tyrosine-protein kinase activity. Abnormal upre-

gulation of MET in cancer often correlates with poor prognosis by

triggering tumor growth, angiogenesis that supply the tumor with

nutrients, and metastasis. It has been revealed that the MET

pathway is one of the most frequently dysregulated pathways in

human cancer [70]. A substantial number of MET inhibitors have

been studied in clinical trails like AMG-458 (Amgen), PF-

04217903 (Pfizer), MK-2461(Merck), ARQ197 (ArQule) etc. [71].

TTK encodes a dual specificity protein kinase with the ability to

phosphorylate tyrosine, serine and threonine. TTK kinase is

associated with cell proliferation and is essential for the proper

attachment of chromosomes to the mitotic spindle. Inhibition of

TTK kinase has been shown to correlate with cell death caused by

chromosomal missegregations [72]. Several TTK kinase inhibitors

have been reported in the literature – Reversine [73], NMS-P715

[74], and MPS1-IN-1 [75].

For some other tyrosine-protein kinases such as LYN, Dasatinib

is an effective inhibitor [76]. Of the 26 kinase-encoding genes we

identified, some genes have been identified as very promising

anticancer targets. For example, BUB1 encoding the mitotic

checkpoint serine/threonine-protein kinase is critical in the

establishment of the mitotic spindle checkpoint and chromosome

congression. It has been shown that disturbed mitotic checkpoints

are a common feature of many human cancers [77]. However,

BUB1 expression levels depend on the localization of tumors and

their severity [78]. Downregulation of BUB1 resulted in more

sarcomas, lymphomas and lung tumors, whereas upregulation of

BUB1 caused sarcomas and tumors in the liver [78]. Our result

shows that PC is related to the upregulation of BUB1 and we

speculate that development of BUB1 inhibitors could provide a

new approach to tackling PC.

To sum up, some of the 26 significantly upregulated protein

kinase genes in PC could be viable new therapeutic targets for PC.

In fact, for the tyrosine-protein kinase genes such as LCK, MET

and LYN, which have been found to be frequently overexpressed

in human cancer including PC [79], effective tyrosine-protein

kinase inhibitors such as Dasatinib, Imatinib, Gefitinib, Erlotinib,

and Sunitinib have been developed for anticancer chemotherapy

[80].

Towards a genetic signature for hypomethylation in
pancreatic cancer

Aberrant hypermethylation of promoter CpG islands is tightly

associated with gene silencing, whereas hypomethylation can lead

to the upregulation of genes. A recent review [81], discusses genes

that have been found to be hypomethylated in PC. With reference

to this gene set, we do find a strong correlation between

hypomethylation and upregulation; specifically, seven of nine

genes mentioned in this review (SERPINB5, CLDN4, SFN,

S100P, S100A4, MSLN, and PSCA) are significantly upregulated,

with SERPINB5, SFN, S100P, and PSCA being among the 100

most upregulated genes in our analysis (Table S1).

A comprehensive study on aberrant methylation in PC has been

performed by Tan et al. [82], who profiled 1505 CpG sites across

807 genes. Initial investigations yielded a list of 63 genes with CpG

site hypomethylation and increased mRNA expression. Somewhat

unexpectedly, the authors also found a similar number of genes

with CpG site hypomethylation and decreased mRNA expression.

Upon further experimentation, 35 of the 63 genes were identified

by the authors as candidate genes that are regulated by

hypomethylation in PC. We find that eight of the 35 candidate

genes (ID1, MMP7, MST1R, NBL1, PHLDA2, PLAT, PLAUR

Figure 3. The five most significant pathways associated with genes upregulated in PC are related to inflammation and immune
response.
doi:10.1371/journal.pone.0093046.g003
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and SFN), and a further 8 (IL8, SPP1, CLDN4, MMP1,

ARHGDIB, NQO1, ITGB4, SERPINB5, and TFF1) from the

original list of 63 genes are also significantly upregulated in our

study.

To summarize, twenty-two genes (MUC4, SERPINB5,

CLDN4, SFN, TFF1, S100P, S100A4, MMP1, MMP7, MSLN,

PSCA, ID1, MST1R, NBL1, PHLDA2, PLAT, PLAUR, IL8,

SPP1, ARHGDIB, NQO1, and ITGB4) are significantly upregu-

lated in our analysis, and there is experimental evidence [81,82] to

suggest that this upregulation is due to hypomethylation. Thus,

these genes will contribute towards a growing list of candidates

including MUC4 [83] that describe a putative genetic signature

for hypomethylation in pancreatic cancer (Table 5). Such a genetic

signature could prove to be useful in the early detection of PC, in a

manner analogous to the clinical use of aberrant methylation of

CCND2 [84] in PC. Since there is an emerging consensus that

‘epigenetic chaos’ promoted changes in gene expression and,

ultimately, leads to cancer [85], it is quite likely that many of the

genes found to be significantly upregulated (Table S1) are

hypomethylated in PC. Of the 22 genes, IPA analysis reveals that

11 genes have a known association with PC (Table 5).

Potential biomarkers among upregulated genes
Tumor tissue protein biomarkers. An observation often

reported in literature is the discrepancy between the level of

expression of a protein and that of its transcript for a given type of

cell [86]. Nonetheless, we find about 70% of thirty two tumor

tissue protein biomarkers identified in two recent reviews [87,88]

were found to be upregulated .2-fold in our analysis. Among

those significantly upregulated (pfp,0.15) were a cluster of genes

associated with the actin microfilament, lGAlS1 (galectin-1),

ACTN4 (actinin-4), PLS1 (plastin-1), TPM2 (tropomyosin b),

CFL1 (cofilin-1), ENO1 (a-enolase), and MSN (moesin). Most of

these proteins are known actin-binding proteins that can modulate

Figure 4. The second most significant network associated with the upregulated genes in PC. A major hub node NF-kB complex, and two
new regulatory modules are highlighted in blue color. One module is made up of two E2F family genes (E2F7, E2F8), ECT2 and RACGAP1; and another
module is made up of several GPX family genes.
doi:10.1371/journal.pone.0093046.g004
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the actin microfilament, or modulate its environment with the

plasma membrane.

Other suggested tumor tissue protein biomarkers [87,88]

significantly upregulated in our analysis include SFN, AGR2,

LGALS1, LGALS3, THBS2, & TGFB1, and four members of the

S100 family, S100A6, S100A10, S100A11, and S100A2 [89]. We

find three additional members of the S100 family, S100A4,

S100A16 and S100P were also significantly upregulated (Table

S1). The S100 family of low molecular weight calcium binding

proteins have strong associations with cancer [90], and several of

them have been used as markers in melanoma and other cancers.

It should be noted that S100P is one of the most upregulated genes

in our analysis (.6106). It has recently been proposed that S100P

be used as a protein biomarker for intraductal papillary mucinous

neoplasms (IPMN) of the pancreas [91], and for pancreatic

adenocarcinoma [92].

Serum protein biomarkers. Early diagnosis of pancreatic

cancer is essential in order to improve the poor prognosis

associated with PC. Serum biomarkers offer a very attractive

and non-invasive solution, and are thus highly sought after [14].

However, there is a paucity of serum biomarkers for PC [15], with

the carbohydrate biomarker CA 19-9 being the most widely used.

Since serum protein biomarkers such as CA-125 may be cleaved

and released in PC [93] a correlation between serum biomarkers

and mRNA expression is not necessarily expected (though in the

case of CA-125, there is evidence that it is overexpressed as well

[93]). Nevertheless, we sought to investigate whether any of the

proposed serum protein biomarkers in the recent literature [3]

were upregulated in pancreatic cancer at the level of mRNA.

Somewhat to our surprise, we found that about one-third of the

corresponding genes, C3, B2M, C1QB, CD9, TIMP1, PGK1,

SERPINA1, APOE, AGR2, APOC1 & SPP1, were significantly

upregulated in our analysis. These results indicate our corhort of

827 significantly upregulated genes also represent an enriched pool

of candidate serum protein biomarkers. The commercial avail-

ability of many human antibodies raises the intriguing possibility of

performing a systematic screen of serum, to detect for protein

products of significantly upregulated genes in our analysis. While

individual biomarkers may suffer from issues of sensitivity and

specificity [14], the promise is that with a large number of

biomarkers, distinctive signatures are likely to emerge, that

correlate with diagnosis and prognosis.

Matrix metalloproteinase biomarkers. Matrix metallo-

proteases represent the most prominent family of proteinases

associated with tumorigenesis [94]. In our analysis, we found that

seven matrix metalloproteases (MMPs) and six proteases from a

related family ‘‘a disintegrin and metalloprotease’’ (ADAMs) to be

significantly upregulated (Table 6). Three of these (MMP9,

ADAM9 and ADAM10) were also found to be upregulated by

Grutzman et al. [20].

Matrix metalloproteases are a family of zinc-dependent

proteases that have the capacity to degrade virtually every

component of the extracellular matrix (ECM). Tumor cells

overexpress these proteases in order to degrade the basement

membrane and invade the surrounding tissue. This activity is also

required for the intravasation and extravasation events in

metastasis. MMP substrates also include non-ECM molecules,

ranging from growth factor precursors and cell surface adhesion

molecules to angiogenic inhibitor precursors [95]. MMPs have

also been implicated in the epithelial to mesenchymal transition

(EMT) [96]. While MMPs have well-recognized roles in the late

stage of tumor progression, invasion, and metastasis, emerging

evidence suggests that the role of MMPs in tumorigenesis is more

complex [97].

One of the more promising and exciting applications of MMPs

in human cancers is as potential cancer biomarkers, both

diagnostic and prognostic. MMP-2, MMP-7 and MMP-9 are

among the most well studied matrix metalloproteases in PC [98].

MMP-9 expression has been linked to worse prognosis, and it also

significantly correlated with tumor expression and distant metas-

tasis [99]. Active MMP-2 levels are upregulated in the pancreatic

juice of patients with cancer (100%) as compared with patients

with chronic pancreatitis (2%) or normal controls (0%) [100]

Similarly, plasma as well as tumor tissues from patients with

pancreatic ductal adenocarcinoma have significantly elevated

MMP-7 levels, which may predict shortened survival of patients

[101].

As expected, MMP-2, MMP-7 and MMP-9 are all significantly

upregulated in our study. However, another matrix matallopro-

tease, MMP-11, is the most highly upregulated MMP, with an

average .10,000 fold overexpression in PC. MMP-11 induction

in adipose tissue has been linked to cancer progression [102] and

MMP-11 has been associated with tumor progression in pulmo-

nary cancer [103], head and neck carcinoma [104] and breast

carcinoma [105]. MMP-11 is known to cleave IGF binding

proteins, which regulate the bioavailability of insulin-like growth

Table 4. Twenty-six Kinase-encoding Genes Upregulated in
Pancreatic Cancer.

Gene* Description

ACVR1 Activin A receptor, type I

BUB1 Budding uninhibited by benzimidazoles 1 homolog (yeast)

BUB1B Budding uninhibited by benzimidazoles 1 homolog beta (yeast)

CDK1 Cell division cycle 2, G1 to S and G2 to M

DYRK2 Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2

EPHA4 EPH receptor A4

IRAK3 Interleukin-1 receptor-associated kinase 3

LCK lymphocyte-specific protein tyrosine kinase

LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog

MAP4K4 Mitogen-activated protein kinase 4

MELK Maternal embryonic leucine zipper kinase

MET Met proto-oncogene (hepatocyte growth factor receptor)

MST1R Macrophage stimulating 1 receptor (c-met-related tyrosine kinase)

MST4 Serine/threonine protein kinase MST4

NEK2 NIMA (never in mitosis gene a)-related kinase 2

NUAK1 NUAK family, SNF1-like kinase, 1

PBK PDZ binding kinase

PRKCI Protein kinase C, iota

PTK6 PTK6 protein tyrosine kinase 6

STK17B Serine/threonine kinase 17b

STK24 Serine/threonine kinase 24 (STE20 homolog, yeast)

STYK1 Serine/threonine/tyrosine kinase 1

TNIK TRAF2 and NCK interacting kinase

TRIB2 Tribbles homolog 2 (Drosophila)

TTK TTK protein kinase

UHMK1 U2AF homology motif (UHM) kinase 1

*Gene names are given according to the HUGO Gene Nomenclature Committee
(HGNC).
doi:10.1371/journal.pone.0093046.t004
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factors (IGFs). We also found two other MMPs known to cleave

IGF binding proteins, MMP-1 and MMP-2, as well as ADAM12,

to be significantly upregulated. While the failure of MMP

inhibitors in clinical trials has been disappointing [106], our

results indicate that MMPs continue to be attractive therapeutic

targets for PC.

Tumor tissue heterogeneity. Most cancers are believed to

originate through of a process of Darwinian evolution occurring

among the cells within the microenvironments provided by the

tissues of a multicellular organism. It has become increasingly clear

that this process can give rise to tumor tissue heterogeneity [107],

with distinct populations of cancer cells predominating in

pancreatic and other tumors [16] [108]. For example, this also

provides a mechanism for the development of drug resistance,

whereby a minor drug resistant subclone in the original tumor

becomes dominant after treatment [109]. In this context it is

possible that for the datasets in our study, the number of cancer

genomes sampled was higher than the number of patient samples.

The task of identifying and validating diagnostic and prognostic

biomarkers is likely to be complicated by the existence of tumor

heterogeneity.

Sample heterogeneity. Most microarray datasets specifically

cited the patient samples as being from either pancreatic

adenocarcinoma (PAC) or pancreatic ductal adenocarcinoma

(PDAC) (Table 1). These samples could still contain contaminants

from the desmoplasia, particularly in studies where microdissec-

tion was not used (Table 1), contributing to sample heterogeneity.

Table 5. A Putative Genetic Signature of Hypomethylated Genes in Pancreatic Cancer.

Gene pfp value Log (2) value Reference*

MUC4
$ 0.000 6.28 Zhu et al., 2011 [83]

SERPINB5 0.000 8.34 Sato et al., 2003 [110]; Fitzgerald et al., 2003 [111]; Ohike et al., 2003 [112]

CLDN4 0.103 2.67 Sato et al., 2003 [110], Tan et al., 2009 [82] (Gastric sarcoma Kwon et al., 2011 [113])

SFN 0.000 7.91 Sato et al., 2003 [110], Tan et al., 2009 [82] (Lung adenocarcinoma Shiba-Ishii et al., 2012
[114])

TFF1
$ 0.001 7.27 Tan et al., 2009 [82] (Prostrate cancer Vestergaard et al., 2010 [115])

S100P
$ 0.000 24.25 Sato et al., 2003 [110]

S100A4 0.004 3.12 Rosty et al., 2002 [116]

MMP1 0.003 4.63 Tan et al., 2009 [82]

MMP7
$ 0.011 4.07 Tan et al., 2009 [82]

MSLN
$ 0.026 4.80 Sato et al., 2003 [110] (Mesothelioma Nelson et al., 2011 [117])

PSCA
$ 0.001 7.78 Sato et al., 2003 [110]

ID1
$ 0.151 2.06 Tan et al., 2009 [82]

MST1R 0.025 3.40 Tan et al., 2009 [82]

NBL1 0.035 2.82 Tan et al., 2009 [82]

PHLDA2 0.000 5.22 Tan et al., 2009 [82] (Osteosarcoma Li et al., 2008 [118])

PLAT
$ 0.014 3.34 Tan et al., 2009 [82]

PLAUR
$ 0.014 3.18 Tan et al., 2009 [82]

IL8 0.007 4.21 Tan et al., 2009 [82] (Colorectal adenocarcinoma Dimberg et al., 2012 [119])

SPP1
$ 0.044 2.14 Tan et al., 2009 [82] (Liver fibrosis Komatsu et al., 2012 [120])

ARHGDIB 0.021 2.40 Tan et al., 2009 [82]

NQO1 0.000 6.19 Tan et al., 2009 [82]

ITGB4
$ 0.014 3.06 Tan et al., 2009 [82]

*References for hypomethylation in other cancers are given in parenthesis.
$
IPA analysis indicates a known association with PC.

doi:10.1371/journal.pone.0093046.t005

Table 6. Matrix Metalloproteinases Upregulated in Pancreatic
Cancer.

Gene pfp value Log (2) value

MMP11 0.00 15.71

MMP12 0.00 4.49

MMP1 0.00 4.63

MMP7 0.01 4.07

MMP2 0.03 2.79

MMP28 0.07 2.37

MMP9 0.15 1.87

ADAM8 0.01 2.91

ADAM9 0.05 2.56

ADAM12 0.06 2.34

ADAMTS6 0.07 2.97

ADAMTS12 0.08 2.54

ADAM28 0.10 2.50

ADAM10 0.16 1.67

doi:10.1371/journal.pone.0093046.t006
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If significant contamination of tumor samples from immune

components of the desmoplasia has occurred, it can have an

impact on the association we found by IPA analysis between PC

and inflammation/immune mechanisms. It should be noted that

there is also support for an association between PC and

inflammation from the literature (which we have cited previously).

A second source of sample heterogeneity is the type of PC. One

study (Pei Pancreas) did not specifically mention PAC or PDAC

under the dataset summary, and thus could conceivably contain

samples from other types of PC, although PDAC accounts for over

90% of the cases of PC.

The broad concordance observed between the microarray

datasets (see Congruency between microarray datasets) suggests

that issues related to sample heterogeneity (as well as other sources

of variation between the microarray datasets) were not a major

complicating factor in this meta-analysis. This observation also

strengthens the case for investigating differentially regulated genes

as putative biomarkers for PC.

Conclusions

Meta-analysis of multiple microarray datasets can yield more

reliable and comprehensive results than using a single dataset,

because the former has increased statistical power and generaliz-

ability. In the present study, we performed a meta-analysis of nine

PC datasets and identified 827 genes that are significantly

upregulated in pancreatic cancer. The two most important

biological networks associated with these genes have TGFB1

and NF-kB as major hubs. A pathway analysis indicates that PC is

significantly associated with inflammation and immune mecha-

nism.

Among the list of candidate cancer genes uncovered by this

study are four highly expressed genes not previously associated

with PC, and twenty-six kinase genes. Kinases have been attractive

targets in combating cancer, and in fact, effective therapeutics

have already been developed for several kinases in our list.

Importantly, this study also revealed potential biomarkers for

pancreatic cancer. Such biomarkers are in urgent need, given the

poor prognosis after (the normally late) diagnosis of PC. Towards

this end, we have also developed a putative genetic signature for

hypomethylated genes in PC. The identification of candidate

cancer genes and putative biomarkers for pancreatic cancer

provide new opportunities for early diagnosis and treatment of PC.
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