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RESEARCH

A polynomial time algorithm 
for computing the area under a GDT curve
Aleksandar Poleksic*

Abstract 

Background: Progress in the field of protein three-dimensional structure prediction depends on the development of 
new and improved algorithms for measuring the quality of protein models. Perhaps the best descriptor of the quality 
of a protein model is the GDT function that maps each distance cutoff θ to the number of atoms in the protein model 
that can be fit under the distance θ from the corresponding atoms in the experimentally determined structure. It 
has long been known that the area under the graph of this function (GDT_A) can serve as a reliable, single numerical 
measure of the model quality. Unfortunately, while the well-known GDT_TS metric provides a crude approximation of 
GDT_A, no algorithm currently exists that is capable of computing accurate estimates of GDT_A.

Methods: We prove that GDT_A is well defined and that it can be approximated by the Riemann sums, using avail-
able methods for computing accurate (near-optimal) GDT function values.

Results: In contrast to the GDT_TS metric, GDT_A is neither insensitive to large nor oversensitive to small changes in 
model’s coordinates. Moreover, the problem of computing GDT_A is tractable. More specifically, GDT_A can be com-
puted in cubic asymptotic time in the size of the protein model.

Conclusions: This paper presents the first algorithm capable of computing the near-optimal estimates of the area 
under the GDT function for a protein model. We believe that the techniques implemented in our algorithm will pave 
ways for the development of more practical and reliable procedures for estimating 3D model quality.

Keywords: Protein structure, Structure modeling, Structure prediction, Model quality
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Background
Advances in the area of protein three-dimensional 
structure prediction depend on the ability to accurately 
measure the quality of a protein model. One of the most 
popular and most reliable measure of the protein model 
quality is GDT_TS. It is defined as the average value of 
GDT_Pθ computed for four distance cutoffs θ = 2i, 
i = 0, 3, where GDT_Pθ is the percentage of model resi-
dues (represented by their Cα atoms) that can be placed 
under θ ångströms from the corresponding residues in 
the experimental structure [1, 2]. In a “high-accuracy” 
version of GDT_TS, denoted by GDT_HA, the distance 
cutoffs are cut in half (θ = 2i, i = −1, 2) [3]. In both 
approaches, the underlying assumption is that the experi-
mental (crystallographic or NMR) structure is close to 

the real (native) structure (which is sometimes not true 
due to experimental errors).

Several methods exist for computing GDT_TS. The 
LGA algorithm [4] can estimate GDT_TS quickly, but 
those estimates deviate from the true GDT_TS values in 
about 10 % of the cases [5]. Rigorous algorithms for com-
puting GDT_TS have also been developed [6–9], but they 
are computationally much more expensive.

The GDT_TS is commonly interpreted as an approxi-
mation of the area under the GDT curve, denoted by 
GDT_A [10–12]. Unfortunately, since the measure is 
approximated using the GDT function values at only sev-
eral distance cutoffs, the errors in the area approxima-
tion are large. As we demonstrate later, GDT_TS is not 
only overly sensitive to small but also insensitive to large 
changes in the protein model’s coordinates.

In this paper, we present a polynomial time algorithm 
for computing GDT_A. Our method runs on the order 
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Õ(n3), where n represents the length of the protein model 
(and Õ hides the log factor). The algorithm returns “near-
optimal” GDT_A scores, meaning that the errors in our 
estimates can be made arbitrary small i.e., smaller than 
any upfront specified vale. Although our method is theo-
retical, we believe that its parallel implementations, cou-
pled with carefully designed speed up techniques, can 
result in a practical and widely used software tool.

The rest of this paper is structured as follows. First, 
we present three examples that illustrate drawbacks of 
GDT_TS and advantages of GDT_A. Then, we place our 
theory on a firm mathematical ground, which enables 
us to formally define the GDT_A computation problem. 
Finally, we describe the actual algorithm for GDT_A and 
provide its running time analysis.

Methods
Definition of the GDT function
The GDT function is a mapping that relates each distance 
cutoff θ to the percentage of model residues that can be 
placed at distance ≤θ from the corresponding residues in 
the experimentally determined structure. The graph of a 
GDT function provides a valuable insight into the quality 
of a protein model (Fig.  1). More specifically, the closer 
the graph runs to the horizontal axis (in other words, the 
smaller the area under the graph), the better the model.

As a single numerical measure of the model quality, 
GDT_TS is extensively used at CASP to rank different 
models for the same target [13, 14]. Since it represents the 
average of GDT_Pθ at several distance cutoffs, GDT_TS is 
often viewed as an approximation of the area under the 
GDT curve (GDT_A) [10–12]:

However, as we demonstrate below, such a sparse sam-
pling of the values of GDT function compromises the 
reliability of GDT_TS.

In our first example, we analyze the protein model 
for the target T0482, submitted by the group TS208 
at CASP8 (Fig.  1). The GDT_TS score of this particular 
model was not even among the best dozen at CASP8, 
despite the fact that it fits the largest number of residues 
at distance ≤∼ 4 from the corresponding residues in the 
experimental structure. In fact, the blue model (Fig. 1a) 
can be superimposed onto the experimental structure so 
that all of its residues are at distance ≤ 8 from the resi-
dues in the experimental structure (Fig.  1b), while no 
such superposition exists for any other model, even for 
the distance cutoff of 10Å. Interestingly, according to the 
MAMMOTH algorithm [15], the blue model is the best 
model for this particular target, while the DALI [16] algo-
rithm ranks it as the second best.

Although it is impossible to tell whether #13 GDT_TS 
rank is more or less fair than #1 and #2 rank assigned 
by MAMMOTH and DALI, respectively, it is also not 
difficult to see that the ranking by the area under the 
GDT plot (GDT_A) would serve as a good compromise 
between these extremes.

The next two examples illustrate further disadvantages 
of GDT_TS. As seen in Fig. 2, better GDT_TS scores can 
be assigned to obviously worse models. Moreover, as 
demonstrated in Fig. 3, very similar models can have sig-
nificantly different GDT_TS scores. 

(1)GDT_TS =
3∑

i=0

GDT_P2i .

Fig. 1 CASP 8 example. a Red lines represent GDT plots of different 3D models of the target protein T0482 submitted during the CASP8 experiment. 
The model submitted by the group TS208 is represented in blue. b Structural alignment of the model submitted by the group TS208 (blue) and the 
experimental structure (red) over 67 residues evaluated by the CASP assessors
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Mathematical formalism
Strictly speaking, the GDT function is not well-defined. 
Zooming into the plot of the model highlighted in Fig. 1a, 
we see a set of many small vertical segments, meaning 
that each point on the horizontal axis is mapped to zero 
or more points on the vertical axis (Fig. 4). On the other 
hand, the inverse function (mapping each distance cut-
offs θ to the percentage of residues in the model structure 
that can be fit under the distance θ from the correspond-
ing residues in the experimental structure) is obviously 
well defined. This allows us to define the area under 
the GDT plot as the complement of the area under the 
inverse function:

where Total_Area represents the area of the rectan-
gular region under consideration (100  ×  10). We start 
our mathematical formalism by first defining a protein 
structure.

(2)GDT_A = Total_Area− GDT_A

Definition 1 A protein structure a is a sequence of 
points in the three dimensional Euclidean space R3 

The sequence elements ai can represent individual 
atoms, but it is more typical (in particular in protein 
structure prediction experiments) to assume that each 
point ai corresponds to the alpha-carbon atom of the 
protein’s ith amino acid.

In what follows, we formally define the GDT function 
[17]. For simplicity of presentation, we will modify the 
codomain of GDT to represent the “fraction of residues” 
(ranging from 0 to 1) instead of “percentages of residues” 
(ranging from 0 to 100). We note that this simple res-
caling of the ordinate values will have no effects on the 
results obtained in our study.

Definition 2 Let a = (a1, . . . , an) be a pro-
tein structure consisting of n amino acids, let 
b = (b1, . . . , bn) be a 3D model of a, and let θ  be a posi-
tive constant. The Hubbard function (or GDT func-
tion) is the function Hb : [0, θ ] → (0, 1], defined by 
Hb(θ) = maxτ |{i | �ai − τ (bi)� ≤ θ}|/n, where  
denotes the Euclidean norm on R3 and τ is a rigid trans-
formation (a composition of a rotation and a translation).

Theorem 1 Hb is a stepwise function with finitely many 
steps θ1, . . . , θk, 1 ≤ k ≤ n − 1.

Proof Since Hb is monotony non-decreasing and since the 
range of Hb is a finite subset of (0,1], it follows that Hb must 
be a stepwise function. To complete the proof, we note that 
the number of steps in Hb matches the size of its range, 
which does not exceed n − 1, where n is the length of b.

For simplicity of presentation, from now on (and when-
ever the model b is implied), we will omit the subscript in 
Hb and denote the Hubbard function only by H.

(3)a = (a1, . . . , an).

Fig. 2 Insensitivity of GDT_TS. This theoretical example shows no 
sensitivity of GDT_TS to large variations in model quality. Surprisingly, 
the red model has a better GDT_TS score than the better blue model, 
even though it is worse by all standards. Notice that, unlike GDT_TS, 
the GDT_A measure is not skewed by the values at the cutoff points 
1, 2, 4 and 8 Å. In fact, the GDT_A score of the blue model is twice as 
good as that of the red model

Fig. 3 Oversensitivity of GDT_TS. a A four helix bundle-like (toy) protein (dashed grey line) along with two of its, almost identical, models (red and 
blue). A realistic example of such a target protein (PDB ID: 1JM0A) is shown on the right (b). In this example, we assume that the protein and its 
models are extended to the right to include 100 or more residues. Note that, if d ∈ {1 Å, 2 Å, 4 Å, 8 Å} then the GDT score of the blue model is signifi-
cantly higher than that of the red model. For instance, if d = 2 Å, then the blue model has the GDT_TS score of about 87.5 since ~50 % all of its resi-
dues can be fit at distance ≤1 Å and 100 % under each distance 2, 4 and 8 Å from the corresponding residues in the experimental structure (dashed 
grey). On the other hand, the GDT_TS score of the red model is only about 75, since only ~50 % of the red model’s residues can be placed under 1 and 
2 Å and 100 % under 4 and 8 Å. In fact, no matter how close the red model gets to the blue model, its GDT_TS score will never improve. Note also that 
the blue and red models have almost identical GDT_A scores, since GDT_A is not sensitive to small coordinate changes
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Algorithm for GDT_A
The area under H is the sum of the areas of the rectangu-
lar regions (θi)(θi − θi−1):

where θ0 = 0 and θk+1 = θ  (Fig. 5). It would be trivial to 
compute Area had we known all θi and all function val-
ues H(θi). Unfortunately, even if we knew the step points 
θi, it would be computationally very difficult to compute 
the function values at them, since the best to date algo-
rithm for computing H(θi) runs on the order of O(n7) [7]. 
Hence, we resort to using the Riemann sums to approxi-
mate (instead of to compute exactly) the area under the 
graph of H.

The following definition and an accompanying theo-
rem can be found in virtually any mathematical analysis 
textbook.

Definition 3 If f : [a, b] → R is a function then 
R =

n∑
i=1

vi(xi − xi−1), where a =  x0  <  x1  <  ···  <  xn =  b 

is the partition of the interval [a,  b] and vi denotes the 
supremum of f over [xi−1, xi], is called the upper Riemann 
sum of f on [a, b].

Theorem  2 Let f be a real, non-decreasing, Riemann 
integrable function on an interval [a, b]. Then 

(4)Area =
k+1∑

i=1

H(θi)(θi − θi−1),

(5)

∣∣∣∣∣

∫ b

a
f (x)dx − R

∣∣∣∣∣ < �x
(
f (b)− f (a)

)
,

where 

is the upper Riemann sum of f the and �x =

maxi(xi − xi−1).

Observe that, since Hb is piecewise continuous, it must 
be integrable on [0, θ]. Thus, the area under the graph of 
H is

To approximate Area with a Riemann sum, one can 
define the partition points ǫ, 2ǫ, . . . ,mǫ, where m = ⌈θ/ǫ⌉ 
(Fig. 6) and then compute an estimate Area(ǫ ) of Area as

(6)R =
n∑

i=1

vi(xi − xi−1)

(7)Area =
∫ θ

0

H(θ)dθ .

Fig. 4 A closer look at the GDT_TS function. Zooming into the GDT plot of the model highlighted in Fig. 1. What appears to be the graph of a con-
tinuous function is, in fact, a set consisting of many separated vertical line segments

Fig. 5 The general shape of the Hubbard function. Notice that the 
values θi along with the function values Hb(θi), i = 1, k , uniquely 
determine the area under the graph of Hb. At the biannual CASP 
experiment, ¯θ = 10
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The error |Area – Area (ǫ)| in the estimate (8) is below 2ǫ.  
Up to a half of this error is due to the error in the Rie-
mann sum with the remaining error being due to the pos-
sible placement of the last partition point mǫ outside the 
interval [0, θ].

Unfortunately, computing the area estimates accord-
ing to (8) is still a challenging problem, because (as we 
mentioned above), there is no computationally effective 
procedure for finding the function values H(iǫ). To cir-
cumvent the problem, we utilize an efficient algorithm 
capable of computing the lower bound estimates Hi of 
H(iǫ), satisfying H((i − 1)ǫ) ≤ Hi ≤ H(iǫ), i = 1,m. We 
then compute an estimate Ãrea(ǫ) of Area as

Since 
∣∣∣Ãrea(ǫ)− Area(ǫ)

∣∣∣ < 2ǫ, it follows that 
Ãrea(ǫ) is a 4ǫ-approximation of Area. Below we show 
how to compute all Hi’s, and, in turn, Ãrea(ǫ) in time 
O
(
n3logn/ǫ6

)
, where n is the length of b. Our algorithm 

takes advantage of an efficient procedure for computing 
near optimal GDT_TS values [5].

Let T(b) denotes the image of the model structure 
b under the transformation T. Denote by MAX(T , θ) 
the largest fraction of residues from T(b) that are at 
distance ≤θ from the corresponding residues in the 
experimental structure a. To find each Hi, it is enough 
to compute a rigid body transformation Ti satisfying 
H((i − 1)ǫ) ≤ MAX(Ti, iǫ) ≤ H(iǫ).

Denote by Tθ a transformation that places a larg-
est subset bθ of residues from b at distance ≤θ from the 
corresponding residues in the experimental structure. 
Given Tθ, one can easily compute bθ by calculating all n 
distances between the residues ai and Tθ(bi). Note that 

(8)Area(ǫ) =
m∑

i=1

ǫH(iǫ)

(9)Ãrea(ǫ) =
m∑

i=1

ǫHi.

P(Tθ, θ) = H(θ). We approximate the transformation Tθ 
by a so-called “near-optimal” transformation i.e., a trans-
formation that places at least as many residues from the 
model structure under distance θ + ǫ as the optimal 
transformation Tθ places under the distance θ. From now 
on, we will use T ǫ

θ  to denote a “near-optimal” transforma-
tion and the corresponding set of residues will be denoted 
by bǫθ. Observe that P

(
T ǫ
θ , θ + ǫ

)
≥ P(Tθ , θ) = H(θ).

Building upon any procedure for computing T ǫ
θ , one 

can develop an algorithm for Ãrea(ǫ) by substituting 
P
(
T ǫ
θi
, θi+ǫ

)
 for Hi in (10), where θi = (i − 1)ǫ. Several 

existing methods can be modified and made suitable for 
finding T ǫ

θ . The most efficient such method relies on the 
concept of “radial pair” [5].

Definition 4 Let S = {s1, . . . , sn} be a set of points in 
the three-dimensional Euclidean space. An ordered pair 
of points (si, sj) is called a radial pair of S if sj is the fur-
thest point from si among all points in S.

Theorem 3  Let T1 and T2 be two transformations and 
let (sk , sl)  be a radial pair of S. If  �T1(sk)− T2(sk)� < ǫ/3 
and �T1(sl)− T2(sl)� < ǫ/3  then there exists a rota-
tion R around the line through T1(sk) and T1(sl) such that 
�R

(
T1

(
sp
))

− T2(sp)� < ǫ, for any sp in S. The rotation R 
can be found in time O (nlogn), where n is the size of S.

A proof of the above theorem can be found in [5]. The 
algorithm for finding R is fairly straightforward and it 
relies on the so-called plane-sweep approach [18].

The Theorem  3 implies that one choice for the near-
optimal transformation T ǫ

θ  is the transformation R  ∘  T, 
where T is any transformation that maps the points bk 
and bl from the radial pair (bk, bl) of bθ to the ǫ/3 neigh-
borhoods of Tθ(bk) and Tθ(bl), respectively, and R is the 
rotation around the radial axis T (bk)T (bl) that maps the 
remaining points from T(bθ) to the ǫ-neighborhoods of 
the corresponding points from Tθ(bθ).

In search for a radial pair of bθ, the algorithm in [5] 
explores all n2 possible pairs of residues in b. For each 
candidate radial pair (bk , bl), the algorithm gener-
ates a finite, representative set of transformations that 
map bk and bl into θ + ǫ/3 neighborhoods of ak and al, 
respectively (see the paragraph below for more details). 
For every such transformation T, a plane-sweep algo-
rithm [18] is used to find a rotation R around the axis 
T (bk)T (bl) that maximizes the number of residues from 
R(T(b)) that can be placed at distance < θ + ǫ from the 
corresponding residues in a.

Fig. 6 Approximation of the Hubbard function by the Riemann sum. 
Area(ǫ) is the sum of the areas of all rectangular regions
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A finite set of transformations that map the resi-
dues bk and bl into the θ + ǫ/3 neighborhoods of ak 
and al, respectively, is constructed in such a way to 
ensure that for at least one of those transformation T, 
�T (bk)− Tθ (bk)� < ǫ/3 and �T (bl)− Tθ (bl)� < ǫ/3. 
This can be achieved by partitioning R3 into small cubes 
of side length slightly smaller than 

√
3ǫ/9 and then col-

lecting the vertices of the cubes that are inside the open 
ball of radius θ + ǫ/6 around ak (Fig. 7). The elements of 
this set, denoted by Ak, are the candidate points T(bk). 
The number of points in Ak is O(1/ǫ3) and at least one 
of them must be at distance < ǫ/6 from Tθ(bk) (Fig.  7). 
For each point ak ∊ Ak, the set Al(ak) of possible images of 
bl under T is computed by discretizing the spherical cap 
S(ak , �bk − bl�) ∩ B(al , θ + ǫ/3), where S(a, r) and B(a, r) 
denote the sphere and the open ball in R3 with center a 

and radius r, respectively, in such a way that at least one 
point from Al(ak) is found at distance < ǫ/3 from Tθ(bl) 
(Fig. 7). We note that size of Al(ak) is O(1/ǫ2). Hence, the 
total number of candidate pairs of points (T(bk), T(bl)) is 
O(1/ǫ5).

An obvious to compute T ǫ
θ1
, . . . ,T ǫ

θm
 is to run the 

just described algorithm m times in succession, for 
θ = θ1, . . . , θ = θm. However, such an approach results 
in many unnecessary repeated calculations as the area 
around ak and the corresponding spherical cap in the 
neighborhoods of al are discretized over and over again. 
Moreover, all transformations T and R, generated and 
inspected during the procedure for finding T ǫ

θi
, are 

inspected again during the procedure for finding T ǫ
θj

, for 
each j > i. 

Fig. 7 Discretizing the space of rigid body transformations. 2D illustration of Ak (the set of the vertices of the squares shown on the left) and the set 
Al (a

k) generated for one ak ∈ Ak
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We show that all transformations T ǫ
θ1
, . . . ,T ǫ

θm
 and the 

corresponding values H1,  …,  Hm can be computed, at 
once, during the procedure of finding the last transfor-
mation, namely T ǫ

θm
. As demonstrated in the pseudocode 

above, the transformation T is generated only once for 
each pair of points 

(
ak , al

)
∈ Ak × Al

(
ak
)
 and a sweep-

plane algorithm for finding R is called only once for each i 
satisfying �ak − ak� < θi + ǫ/6 and �al − al� < θi + ǫ/3. 
The values of Hi are updated on the fly.

Running time analysis
To analyze the algorithm’s running time, we note that 
the number of iterations of the first for loop is equal to 
the number of candidate radial pairs (bk,  bl), which is 
O
(
n2
)
. The number of iterations of the second for loop 

matches the number of pairs of grid points around ak and 
al, which is O

(
1/ǫ3

)
× O

(
1/ǫ2

)
= O

(
1/ǫ5

)
. Each one of 

O(m) = O(⌈θ̄/ǫ⌉) = O(1/ǫ) iterations of the third for 
loop calls a O(nlogn) plane-sweep procedure to compute 

an optimal rotation and (if needed) to update the value 
Hi. Hence, the asymptotic time complexity of the three 
nested for loops is O

(
n3logn/ǫ6

)
.

Conclusions
Estimating the quality of a protein 3D model is a chal-
lenging task. Automatically generated GDT_TS score is 
helpful as the first raw approximation but this measure 
is neither sensitive nor selective enough to be exclusively 
relied upon in ranking different models for the same tar-
get. In this paper, we show that using a more accurate 
approximation of the area under the GDT curve as the 
criterion of model quality addresses many of the draw-
backs of GDT_TS. We also present a rigorous Õ

(
n3
)
 algo-

rithm for computing the area under the GDT curve for a 
given model, where n is the model’s length. The area esti-
mate returned by our method is “near-optimal”, meaning 
that the error in the estimate can be made smaller than 
any upfront specified value.
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Despite the cubic asymptotic running time with a 
relatively large hidden constant, we believe that the 
techniques presented in this paper can guide a future 
development of a computationally efficient computer 
program, in particular since our methodology is amena-
ble to parallel implementations. A heuristic version of the 
algorithm for estimating the area under the GDT plot can 
be found at http://bioinfo.cs.uni.edu/GDT_A.html.
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