Detection of Isocitrate Lyase in Achlya flagellata

Joanne Tontz Ellzey
University of Texas at El Paso

Christina D. Chavez
University of Texas at El Paso
Detection of Isocitrate Lyase in *Achlya flagellata*

JOANNE TONTZ ELLZEY and CHRISTINA D. CHAVEZ

The glyoxylate cycle couples fatty acid degradation with carbohydrate synthesis. C₂ compounds enter the citric acid cycle as acetyl-CoA, which condenses with oxaloacetic acid, producing citric acid. The citric acid is converted to isocitric acid. The key enzymes of the glyoxylate cycle are (1) isocitrate lyase, which catalyzes the conversion of isocitrate \leftrightarrow succinate and glyoxylate and (2) malate synthase, which catalyzes the reaction, acetyl coenzyme A and glyoxylate \rightarrow malate (Dixon and Kornberg, 1959).

Reports of isocitrate lyase in fungi have been primarily concerned with the higher fungi (Kornberg and Collins, 1958; Collins and Kornberg, 1960; Gottlieb and Ramachandran, 1960; Heberling, Berky, and Stone, 1960; Frear and Johnson, 1961; Turian, 1961; Duntze et al., 1969; Kohr, Vanderhaeghe, and Combepine, 1969; Szabo and Avers, 1969; Cotter et al., 1970; Perlman and Mahler, 1970; Selem and Sawsan, 1970; O'Sullivan and Casselton, 1973). McCurdy and Cantino (1960) discovered a metabolic route from glyoxylate to glycine in the chytridiomycete *Blastocladiella emersonii*. The following paper is the first report of the glyoxylate pathway in the oomycetes.

In unpublished ultrastuctural data, Ellzey observed the association of microbodies with storage bodies. The contents of the storage bodies appeared to be converted from lipid to carbohydrate in *Achlya flagellata* Coker oogonial initials. Therefore, an assay was performed to determine if isocitrate lyase was present in oogonial cultures of *A. flagellata*.

Materials and Methods

Pure cultures of *Achlya flagellata* (ATCC #14566) were grown on autoclaved hemp seeds in sterile water, as well as on Barksdale Medium #5, containing 400 mg edamin, 2400 mg glucose, 80 mg calcium glycerophosphate, 1 ml 0.5 M MgSO₄ · 7H₂O, 0.5 ml 2.0 M KCl, 0.5 ml metal mix #4, and 100 mg Tris in 1000 ml distilled water (pH 6.8). After autoclaving, 400 mg of potassium bicarbonate in 10 ml of distilled water was added to Barksdale Medium #5. Five-day-old cultures containing hyphae, oogonia, antheridia, and oospores were harvested by centrifugation at 15,000 rpm for 15 min. A mortar and pestle were used to disrupt the fungal walls in 0.05 M Tris buffer containing 0.05 mM MgCl₂. After

![Figure 1. Optical density at 520 nm as a function of glyoxylate concentration in 5 ml of solution.](image-url)

1 Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968.
Isocitrate Lyase in Achlya Flagellata

RESULTS AND DISCUSSION

Figure 1 compares the optical density of the control containing 0.025-0.2 μmoles glyoxylate/5 ml solution with the optical density of 5 ml fungal supernatant. A red-violet product was obtained from five-day-old cultures of A. flagellata grown on either hemp seeds or Barksdale Medium #5. Experimental solutions had 9.8 and 6.7% transmission. These readings were within the control range of 2.2-64.5% transmission.

The positive assay for isocitrate lyase in A. flagellata indicates the presence of the glyoxylate pathway. Further work is in progress to determine if microbodies of oogonial initials contain isocitrate lyase. Ultimately, we seek to determine if storage bodies of oogonial initials are the sites of conversion of lipids to carbohydrates.

REFERENCES CITED