Carrion Beetles (Coleoptera: Silphidae) of Northeastern Iowa: A Comparison of Baits for Sampling

David R. Coyle
Luther College

Kirk J. Larsen
Luther College
Carrion Beetles (Coleoptera: Silphidae) of Northeastern Iowa: A Comparison of Baits for Sampling

DAVID R. COYLE¹ and KIRK J. LARSEN²

Department of Biology, Luther College, Decorah, Iowa 52101

Carrion beetles (Coleoptera: Silphidae) were inventoried over a 8-week period from June into August of 1996 at 10 sites in 4 counties of extreme northeastern Iowa. Carrion preference and relative abundance of carrion beetles were studied by use of non-lethal pitfall traps constructed from large plastic plant pots and baited with aged fish, beef liver, chicken, or piglets. A total of 3,183 carrion beetles were collected, representing 11 different species. The most commonly encountered species of carrion beetles in northeastern Iowa included Necrophila americana (71.5%) and Oiceoptoma novaboracense (18.5%). When comparing baits, chicken and fish attracted the greatest number of carrion beetle species, individual beetles, and the most diverse assemblage of beetles as compared to beef liver and piglets. No American Burying Beetles (Nicrophorus americanus), a federally-listed endangered species last documented in northeastern Iowa in 1921, were found. We propose aged chicken as the most useful bait for future surveys of carrion beetles.

INDEX DESCRIPTORS: carrion beetles, Silphidae, pitfall trapping.

Carrion beetles (Coleoptera: Silphidae) are important components of ecological food webs in their role of disposing animal carcasses (Wilson and Knollenberg 1984). Carrion beetles are known to locate recently deceased carrion primarily by olfaction (Milne and Milne 1944, Milne and Milne 1976, Shubeck 1968, Abbott 1927). Surveys for carrion beetles have taken advantage of this carrion location behavior by using baited pitfall traps. Live or non-lethal pitfall traps work well for surveys, as they are easily assembled, manageable, and effective in releasing bait odors without killing incoming beetles (Newton and Peck 1975).

The primary objective of this study was to obtain baseline information on the carrion beetle fauna of northeastern Iowa and to determine presence or absence of the American burying beetle (Nicrophorus americanus Olivier). The American Burying Beetle is an endangered species, not found in Winneshiek County, Iowa since 1921 (Raithel 1991), and currently thought to be extirpated from the state. A secondary objective of this study was to determine effectiveness of chicken, beef liver, fish, or piglet as baits for attracting carrion beetles.

METHODS

Study Sites

Ten sites in four counties located in extreme northeastern Iowa (Fig. 1) were surveyed for carrion beetles. These sites included original tallgrass prairie, shrubby old fields, flood plains, peat marshes, and wooded areas (Table 1), and were selected based primarily on their proximity to the Upper Iowa River or other major riverways.

Beetle Sampling

We followed the Kozol (1991) U.S. Fish and Wildlife Service survey protocol using baited non-lethal pitfall traps. Pitfall traps were constructed from plastic plant pots (30 cm dia by 30 cm deep) with 1 cm open holes in the bottom to allow water drainage. Pots were buried in the ground with the upper lip flush with the surface of the ground. A 0.95 liter (1 quart) Mason jar covered with nylon window screen containing 200 to 300 g of ripe bait was placed in the bottom of each pitfall trap. All baits were allowed to ripen in closed containers in the sun for 2 to 3 days prior to use. Chicken-wire mesh screen was staked over each trap to deter vertebrate scavengers from disturbing the traps. Plywood rain covers were then sloped over each trap to prevent the traps from becoming flooded with water which can mask the bait odor and drown specimens during times of precipitation (Conley 1982). Traps were checked early in the morning before the heat of the day, and any specimens captured were identified, counted, and removed from the trap to an area upwind to try to prevent the same specimen from returning to the same trap. Representative specimens were collected for each species as voucher specimens and are held in the research insect collection of the Sherman Hosielt Museum of Natural History at Luther College, Decorah, Iowa.

Preliminary Survey

An initial survey at 10 sites occurred between 19 June and 8 July 1996 in which fish (trout) were used as bait. At each site, four traps were constructed to determine the abundance and richness of carrion utilizing species at these sites.

Bait Comparison Survey

Beginning the week of 8 July 1996, we began a comparison of the attractiveness to carrion beetles of four different types of baits. The same four traps at each site and trapping procedures were used as in the preliminary survey, although each trap now contained one.
of four different types of bait. Bait treatments included 1) dead fish (a 4-5" trout), 2) chicken breasts, legs, and/or gizzards, 3) beef liver, and 4) dead piglets. Traps continued to be checked until the survey was ended the week of 8 August 1996.

Statistical Analysis

Data were analyzed using analysis of variance (ANOVA) to examine effects of bait type on the following variables: beetle abundance, species richness, Shannon's Diversity Index (H'), and Evenness (J).

RESULTS

Preliminary Survey

Peak carrion beetle numbers were present primarily in the beginning and ending weeks of our survey (Fig. 2). A total of 1,633 carrion beetles representing 10 different species were collected in the traps from 10 sites baited with fish over the period between 19 June and 8 July (Table 2). Over 77% of these beetles were *Necrophila americana* (L.), while an additional 19% of the total catch consisted of two other species, *Oiceoptoma novaboracense* (Forster) and *Necrodes surinamensis* (Fab.). On average, each trap collected 2.15 beetles/trap/day.

Bait Comparison Survey

A total of 1,550 carrion beetles representing 9 species were collected in the 31 day period between 8 July and 8 August (Table 2), for an average of 1.25 beetles captured/trap/day. Almost 92% of these beetles captured between 8 July and 8 August were two species, *N. americana* (65.7%) and *O. novaboracense* (26%). These species were attracted to all bait types.

Table 1. Ten sites in northeastern Iowa surveyed for carrion beetles (Coleoptera: Silphidae) with four baited live pitfall traps during 1996.

<table>
<thead>
<tr>
<th>SITE</th>
<th>SITE NAME</th>
<th>COUNTY</th>
<th>HABITAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hayden Prairie State Preserve</td>
<td>Howard</td>
<td>240 acre original tallgrass prairie</td>
</tr>
<tr>
<td>2</td>
<td>Cardinal Marsh</td>
<td>Winneshiek</td>
<td>Marshy grassland with woods surrounding</td>
</tr>
<tr>
<td>3</td>
<td>Chattahoochie Park</td>
<td>Winneshiek</td>
<td>Shrubby old field adjacent to Upper Iowa River</td>
</tr>
<tr>
<td>4</td>
<td>Hoslet Field Study Area</td>
<td>Winneshiek</td>
<td>Box elder flood plain adjacent to Upper Iowa River</td>
</tr>
<tr>
<td>5</td>
<td>Freeport Marsh</td>
<td>Winneshiek</td>
<td>Small peat marsh adjacent to Upper Iowa River</td>
</tr>
<tr>
<td>6</td>
<td>Chipera Prairie Preserve</td>
<td>Winneshiek</td>
<td>77 acre original tallgrass prairie</td>
</tr>
<tr>
<td>7</td>
<td>Lake Meyer Nature Center</td>
<td>Winneshiek</td>
<td>Shrubby old field on top of hill next to Lake Meyer</td>
</tr>
<tr>
<td>8</td>
<td>Big Paint/Little Paint, Yellow River St Forest</td>
<td>Allamakee</td>
<td>Deciduous forest adjacent to streams</td>
</tr>
<tr>
<td>9</td>
<td>Scenic Overlook, Yellow River State Forest</td>
<td>Allamakee</td>
<td>Coniferous and deciduous woods on top of bluff</td>
</tr>
<tr>
<td>10</td>
<td>Volga River State Recreational Area</td>
<td>Fayette</td>
<td>Shrubby old field</td>
</tr>
</tbody>
</table>
These species were found in low abundance, but were relatively even in their distribution among the sites. One reason for collecting fewer Nicrophorus than expected may be that the timing of our study did not correspond to the peak activity of Nicrophorus, which typically occurs in June (Kozol et al. 1988). It was rare to find more than five beetles of any Nicrophorus in the same trap on the same day together (D.R. Coyle, pers. obs.).

Kozol et al. (1988) also stated that some species of Nicrophorus have a second population peak in mid to late summer. These findings correlate with our results (Fig. 2), which shows the end of an early summer population peak in June and the apparent beginning of a late summer population peak in August.

Carrion beetle species are nocturnal (Milne and Milne 1944, Abbott 1927, Scott et al. 1987), and this may have affected our results as some beetles may have escaped from the traps during the night before they were counted. Ants (Hymenoptera: Formicidae) were occasionally found in the pitfall traps, and can have a significant negative impact on carrion beetle reproductive ecology, although greater in the southern U.S. than further north (Scott et al. 1987). Therefore, when possible, traps were moved to avoid ants, but this still may have had an effect on our results. However, no carrion beetle mortality was observed as the result of ant activity or large vertebrate disturbance to the traps.

Although Wilson and Knollenberg (1984) suggest that baited pitfall traps may give a biased sample, they are still one of the better sampling procedures for this type of species survey. The type of bait used in our traps influenced the beetles collected. Four baits that have commonly been used for monitoring carrion beetles include chicken drumsticks or baby chicks (Shubeck 1968, Shubeck 1971, Shubeck 1975, Lomolino and Creighton 1996, Shubeck 1976, Kozol et al. 1988, Scott et al. 1987, Newton and Peck 1975), fish (Shubeck 1976, Wilson and Knollenberg 1984, Walker 1957, Newton and Peck 1975), and piglets (Shubeck 1970, Newton and Peck 1975).

This study directly compared these four bait types for their effectiveness in attracting carrion beetles. Shubeck (1976) observed that there appeared to be a preference in carrion beetles for bait such as fish. This may be supported by the results of our initial survey, as more beetles were captured over a shorter period than during the second bait comparison survey. However, this may also simply be an artifact of the peak numbers of carrion beetles which are normally present in June (Kozol et al. 1988), although Nicrophorus have been
collected in Nebraska throughout June, July, and August (J. Bedick, pers. comm.). Fish did attract a relatively diverse beetle assemblage, and along with chicken, attracted the highest number of carrion beetle species, although chicken attracted the most diverse carrion beetle assemblage.

In conclusion, our results gave us an indication of the diversity and abundance of common carrion beetle fauna of Northeastern Iowa, and also provided a good comparison of four commonly used carrion beetle baits. While fish was an effective bait, we highly recommend chicken as the most useful bait for surveys of carrion beetles if only one bait choice is available for sampling.

ACKNOWLEDGMENTS

This study was supported by a 1996 Summer Faculty/Student Collaborative Research Grant from the Luther College Academic Dean’s office. Thanks to the Decorah Jack & Jill store, the Decorah Fish Hatchery (Iowa D.N.R.), and Robert Coyle for donating the various baits used in the survey. The constructive comments of Jon Bedick (U. of Nebraska) and two anonymous reviewers on this manuscript were appreciated.

LITERATURE CITED


