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ABSTRACT

In this work we investigate the behavior of the Minkowski Functionals admitted

by a sequence of sets which converge to the unit ball ‘from the inside’. We begin in R2

and use this example to build intuition as we extend to the more general Rn case. We

prove, in the penultimate chapter, that convergence ‘from the inside’ in this setting is

equivalent to two other characterizations of the convergence: a geometric characterization

which has to do with the sizes of the faces of each polytope in the sequence converging to

zero, and the convergence of the Minkowski functionals defined on the approximating sets

to the Euclidean Norm. In the last chapter we explore how we can extend our results to

infinite dimensional vector spaces by changing our definition of polytope in that setting,

the outlook is bleak.
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CHAPTER 1

INTRODUCTION

In a geometry course, one might spend some time looking at the shapes unit balls

produced by various norm functions and metrics. It is also possible, however, to go the

other direction. That is, to take a shape (if it is nice enough) and define a norm with it. It

is quite simple, really: set a point x somewhere in your space and pick a nice shape to sit

at the origin. Now, scale the shape with positive numbers until the shape just barely

touches x. Once this is achieved, record the final scalar that is used. This scalar is taken

to be the ‘norm’ of x with respect to the shape that is used. What we have just described

is how the Minkowski functional works. Quite naively, the question we explored in this

paper is this: If we have some sets which approximate the unit ball, do the Minkowski

functionals admitted by these sets approximate the Minkowski functional admitted by the

unit ball (the euclidean norm)?

The main theorem of this paper does not connect to the popular literature in a

way that would be typically worth mentioning in the introduction. The question that is

asked above is first pursued in Chapter 3 in R2 where the approximating sets are regular

polygons. It was immediately obvious when I moved into R3 that there wasn’t a good

generalization of ‘regular’ polytopes in higher dimensions, thus the generalization that is

made in higher dimensions abandons this notion of regularity. The initial R2 results

proved in Chapter 3 are successfully extended to Rn in Chapter 5. Chapter 2 is dedicated

to defining the traditional concepts related to topological vector spaces and it is also

dedicated to proving some simple, but necessary, theorems about seminorms and

Minkowski functionals. We spend Chapter 4 proving properties of convex sets which were

taken for granted in Chapter 3.

Chapter 4 is a showcase of some useful properties of convex sets in a general, not

necessarily finite dimensional, setting. In particular, the main theorem decomposes the

boundary of a convex set into the union of the faces. The main theorem also decomposes
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the vector space into the ‘facial cones’ which are made by the convex set. And lastly, the

main theorem in Chapter 4 also decomposes the convex set itself into a union of convex

hulls of the faces joined with an interior point.

The final theorem in Chapter 5 is a three way equivalence which characterizes the

convergence of Minkowski functionals defined on polytopes to the norm function in finite

dimensional spaces. It relies on a lemma which states that between any two concentric

balls there lies a convex polytope, with respect to set containment. All of these statements

together make for a colorful mix of standard analysis techniques which are accessible to

any graduate student who has taken a real analysis course.

Chapter 6 is dedicated to exploring the future work related to this problem. An

obvious area of exploration would be to extend results to infinite dimensional spaces. We

review the work we have done and identify which properties restrict us to Rn.

Additionally, we explore how to generalize the notion of a convex polytope in infinite

dimensional spaces.
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CHAPTER 2

SEMINORMS AND THE MINKOWSKI FUNCTIONAL

In functional analysis the earliest encountered structure is the topological vector

space. A topological vector space is a vector space which has been endowed with a

topology that respects the operations of vector addition and scalar multiplication.

Requiring the topology to satisfy the T1 separation axiom (or, equivalently, requiring

every singleton to be closed), forces the topology to be T2. The original definitions and

arguments that we present in this chapter, besides Lemma 2.8 and Lemma 2.9, can be

found in [5]. However, I have filled in many of the dismissed details.

Definition 2.1 (Topological Vector Space). If X is a vector space over the scalar field Λ,

usually R or C, and τ is a topology on X then the pair (X, τ) is a topological vector space

if

i) x ∈ X ⇒ {x} is closed in τ .

ii) The mapping + : X ×X → X is continuous.

iii) The mapping · : X × Λ→ X is continuous.

We say that a topological vector space with a norm is a normed vector space, or a

normed linear space.

Definition 2.2 (Norm). A norm on a topological vector space X is a nonnegative

function such that

i) p(λx) = |λ|p(x)

ii) p(x+ y) ≤ p(x) + p(y)

iii) p(x) = 0⇒ x = 0



4

There are topological vector spaces which are not normable. However, on any

vector space it is possible to define the concept of a seminorm, which is weaker than that

of a norm. A seminorm p is a real valued function which only satisfies i) and ii) from

Definition 2.2. Before we continue it is necessary to establish some terminology.

Definition 2.3 (Absorbing, Balanced, Convex). Let X be a vector space with field Λ.

i) A ⊂ X is absorbing if for every x ∈ X there is a nonnegative number t so that

x ∈ tA.

ii) A ⊂ X is balanced if for every λ ∈ Λ with |λ| ≤ 1 we have λA ⊂ A.

iii) A ⊂ X is convex if it is closed under convex combinations. That is, for every pair

x, y ∈ A, the set of all convex combinations of x and y, denoted [x, y] and given by

{tx+ (1− t)y : t ∈ [0, 1]}, is a subset of A.

Note that any vector space X contains a trivially absorbing set, all of X itself. So

on any vector space we may define the following functional, which is the subject of our

investigation in this paper:

Definition 2.4 (Minkowski Functional). Let A ⊂ X be an absorbing set. Then the

Minkowski Functional of A, denoted µA, is given by

µA(x) = inf{t > 0 : x ∈ tA}

The Minkowski functionals are important because they connect seminorms to their

unit balls in the following sense: take a seminorm and consider the set of points where

that seminorm has value less than 1 (i.e. generate the unit ball). Now, view this unit ball

as an absorbing set. It turns out that the Minkowski functional determined by this

absorbing unit ball is actually the seminorm that we started with. This is the content of

the next theorem:

Theorem 2.5. Let X be a vector space and let p be a seminorm on X. Then

B = {x : p(x) < 1} is an absorbing, balanced, and convex set. Moreover, p(x) = µB(x).
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Proof. Let x ∈ X. Let s ∈ Λ so that p(x) < s. Then p(s−1x) = s−1p(x) < 1. This

implies that s−1x ∈ B, so we get x ∈ sB, thus B is absorbing. Let λ ∈ Λ with |λ| ≤ 1.

Then for any x ∈ B it follows that p(λx) = |λ|p(x) ≤ p(x) < 1, which means that B is

balanced. Let x, y ∈ B and let t ∈ [0, 1]. Then

p(tx+ (1− t)y) ≤ p(tx) + p((1− t)y)

= tp(x) + (1− t)p(y)

< t+ 1− t = 1

and thus B is convex. Now we need to show that p(x) = µB(x). Suppose that

p(x) < µB(x). Then let s ∈ R so that p(x) < s < µB(x). From the left inequality we get

that

p(x) < s

s−1p(x) < 1

p(s−1x) < 1

which means that s−1x ∈ B. From this we get x ∈ sB. Since µB(x) is the infimum of such

numbers, µB(x) ≤ s. But this contradicts s < µB(x). Hence it must be true that

p(x) ≥ µB(x). Now suppose that µB(x) < p(x). Since µB(x) is defined as the greatest

lower bound of {t > 0 : x ∈ tB}, p(x) cannot be a lower bound for this set. Hence let

t ∈ R with µB(x) ≤ t < p(x) so that x ∈ tB. From this inequality we get that

t < p(x)

1 < t−1p(x)

1 < p(t−1x)

which means that t−1x /∈ B, thus x /∈ tB. This is a contradiction, hence µB(x) ≥ p(x) and

µB(x) = p(x). �
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Example 2.6 (Taxicab Norm). If z ∈ R2 and z = (x, y) then the Taxicab norm of z is

given by ||z||T = |x|+ |y|. The previous theorem tells us that the unit ball should be

absorbing, balanced, and convex. We can compute the unit ball directly:

||z||T < 1

|x|+ |y| < 1

|y| < 1− |x|

|x| − 1 < y < 1− |x|

This last inequality yields the diamond shape in Figure 2.1 and is the “unit ball”

for the Taxicab Norm. But, suppose that we did not start out with a seminorm as

Theorem 2.5 requires. Suppose that we simply started just started out with an absorbing,

balanced, and convex set. Using the Minkowski functional, we obtain a seminorm.

Figure 2.1: The Taxicab Unit Ball in R2.

Theorem 2.7. Let A be an absorbing, balanced, and convex set. Then µA(x) is a

seminorm.

Proof. We will begin by proving property i) from Definition 2.2 but we first prove

a weaker statement. Let A be an absorbing, balanced, and convex set.
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Claim. For λ ≥ 0, µA(λx) = λµA(x)

Proof of Claim. Let x ∈ X. Suppose that λ = 0. Since A is absorbing we know

that µA(0) = 0. Then

µA(λx) = µA(0x) = µA(0) = 0 = 0µA(x) = |λ|µA(x)

as desired. Now suppose that λ > 0. We want to show that the following equality holds:

{t > 0 : λx ∈ tA} = λ{t > 0 : x ∈ tA}. Let t0 > 0 such that λx ∈ t0A. By the continuity of

scalar multiplication, x ∈ t0
λA. Since both t0 and λ are positive numbers, t0

λ is a positive

number. Thus t0
λ meets the criterion for belonging to {t > 0 : x ∈ tA}. Since

t0
λ ∈ {t > 0 : x ∈ tA}, t0 ∈ λ{t > 0 : x ∈ tA}. This shows the first inclusion, that

{t > 0 : λx ∈ tA} ⊂ λ{t > 0 : x ∈ tA}. Now let t0 > 0 such that x ∈ t0A. Again since λ

and t0 are positive, λt0 is positive. Additionally, x ∈ t0A ⇐⇒ λx ∈ λt0A. Note now that

λt0 meets the criterion for belonging to {t > 0 : λx ∈ tA}. The fact that λt0 originated

from λ{t > 0 : x ∈ tA} gives us our second inclusion, hence

{t > 0 : λx ∈ tA} = λ{t > 0 : x ∈ tA}. Recall that the infimum is positive homogeneous:

µA(λx) = inf{t > 0 : λx ∈ tA}

= inf λ{t > 0 : x ∈ tA}

= λ inf{t > 0 : x ∈ tA}

= λµA(x)

This ends the claim.

So now suppose that |λ| > 0. The balanced property of A tells us that for any

t > 0, λx ∈ tA ⇐⇒ |λ|x ∈ tA. Therefore we get that

{t > 0 : λx ∈ tA} = {t > 0 : |λ|x ∈ tA} and hence µA(λx) = µA(|λ|x) (?). We already

showed, however, that property i) holds for positive scalars in the Claim. Hence

µA(|λ|x) = |λ|µA(x)(??). Combining (?) and (??) we get that

µA(λx) = µA(|λ|x) = |λ|µA(x). This completes the proof of property i). To show property

ii), select t0 from {t > 0 : x ∈ tA} and s0 from {s > 0 : y ∈ sA} so that µA(x) < t0 and
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that µA(y) < s0. Since x ∈ t0A and y ∈ s0A, t−10 x and s−10 y are both in A. We may write

x+ y

t0 + s0
=

x

t0 + s0
+

y

t0 + s0
=

(
t0

t0 + s0

)
t−10 x+

(
s0

t0 + s0

)
s−10 y.

Thus x+y
t0+s0

is a convex combination of t−10 x and s−10 y, which are both in A. Since A is

convex, x+y
t0+s0

is also in A. Thus x+ y ∈ (t0 + s0)A. Then we obtain that

µA(x+ y) ≤ t0 + s0. Since we may repeat this process for t0 and s0 chosen to be

arbitrarily close to µA(x) and µA(y) respectively, by the definition of these objects as an

infimum, the desired result follows: µA(x+ y) ≤ µA(x) + µA(y). �

Here are some practical properties of the Minkowski functional which we will use

often

Lemma 2.8. If A ⊂ B and both are absorbing, then µB(x) ≤ µA(x).

Proof. Let x ∈ X. Then for any t ≥ 0(A ⊂ B ⇒ tA ⊂ tB). Thus since µB(x) is a

lower bound for the collection {t > 0 : x ∈ tB}, it is also a lower bound for the collection

{s > 0 : x ∈ sA}. Since µA(x) is the greatest lower bound of {s > 0 : x ∈ sA}, it follows

that µB(x) ≤ µA(x), as desired. �

Lemma 2.9. If p is a norm and Br denotes the p-ball of radius r for r ∈ R+, then

µBr(x) =
p(x)

r

Proof. By direct manipulation:

µBr(x) = inf{t > 0 : x ∈ tBr}

= inf{t > 0 :
x

t
∈ Br}

= inf{t > 0 : p
(x
t

)
< r}

= inf{t > 0 : p
( x
tr

)
< 1}

= inf{t > 0 :
x

tr
∈ B1}
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= inf{t > 0 :
x

r
∈ tB1}

= µB1

(x
r

)
= p

(x
r

)
=
p(x)

r

�

We are curious: If two absorbing sets A and B are ‘close’ in some sense, does

µA ≈ µB? In the next chapter we will approach this question through a particular

example which is recognizable: we will approximate the unit ball in R2 with regular

inscribed polygons and we will observe that the Minkowski functionals associated with

these inscribed polygons converge pointwise to the euclidean norm on R2.
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CHAPTER 3

SIMPLE CASE: REGULAR POLYGONS IN R2

In this Chapter we will prove a unit ball approximation theorem in a familiar

setting. Just as Archimedes used many-sided regular polygons to approximate the value of

π, we will use many-sided inscribed regular polygons, denoted Pn, to approximate the R2

euclidean norm ||x|| using µPn(x). We begin in this setting so that as we move to prove

the case in Rn the n−dimensional polytopes will be easier to visualize. This first lemma

illustrates an important strategy that we will return to: polygons (and polytopes) which

have vertices in the boundary of the unit ball contain, as a subset, a ball of smaller radius.

Once we have some way of determining this radius, we can develop a criterion which will

yield a sequence of polygons which converge to the unit ball in a sense that we will define

later. For the rest of this paper we will use the term polygon and polytope to mean

convex polygon and convex polytope. The following lemma is obvious upon observing

Figure 3.1, but we prove the lemma using the techniques that are used higher dimensions

as to better prepare our intuition.

Figure 3.1: Regular 6-gon Inscribed in the Unit Circle R2.
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Lemma 3.1. In R2, let Pn denote the regular n-gon inscribed in the unit circle. Also, let

Br denote the set {x ∈ R2 : ||x|| < r}. Then Bcos(π/n) ⊂ Pn.

Proof. Let Pn be a regular polygon inscribed in B1 with vertices

x0 = 〈1, 0〉, . . . , xn−1 =
〈

cos
(
(n−1)2π

n

)
, sin

(
(n−1)2π

n

)〉
and let x ∈ Bcos(π/n). If x = 0, then

it is clear that 0 ∈ Pn for any n. Suppose instead that x ∈ Bcos(π/n) and that x 6= 0.

Observe that the collection Arg(x0), . . . ,Arg(xn−1) forms a partition of S1. It follows that

there is an i ≤ n− 1 so that Arg(xi) ≤ Arg(x) < Arg(xi+1), with the convention that

xn−1+1 = x0. Hence x is in the conical hull of xi and xi+1. That is, there exist nonnegative

constants α ≥ 0 and β ≥ 0 so that x = αxi + βxi+1. By the continuity of scalar

multiplication and addition, the function c : [0, 1]→ R2 given by c(t) = txi + (1− t)xi+1 is

a continuous function and hence ||c(t)|| is continuous. Let θ1 = i2π
n and θ2 = (i+1)2π

n so

that xi = 〈cos(θ1), sin(θ1)〉 and xi+1 = 〈cos(θ2), sin(θ2)〉. Then observe that

0 =
d

dt
(||c(t)||)

=
d

dt
(||t〈cos(θ1), sin(θ1)〉+ (1− t)〈cos(θ2), sin(θ2)〉||)

=
d

dt

√
(t cos(θ1) + (1− t) cos(θ2))2 + (t sin(θ1) + (1− t) sin(θ2))2

=
d

dt

√
t2 + (1− t)2 + 2t(1− t) cos(θ2 − θ1)

=
4t− 2 + 2(1− 2t) cos(θ2 − θ1)√
t2 + (1− t)2 + t(1− t) cos(θ2 − θ1)

= (2t− 1)− (2t− 1) cos(θ2 − θ1)

Since θ2 − θ1 6= 0, it follows that d
dt (||c(t)||) = 0 ⇐⇒ t = 1/2. Since ||c(t)|| is

continuous, the extreme value theorem tells us that the minimum value of ||c(t)|| on [0, 1]

is min{||c(0)||, ||c(1/2)||, ||c(1)||}. Plugging in these values we obtain that

1 = ||c(0)|| = ||c(1)||. Also, since θ2 − θ1 = 2π
n , using a half-angle identity we get that

||c(1/2)|| =

√
1/2 + 1/2 cos

(
2π

n

)
= cos

(π
n

)
< 1
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Hence any convex combination of xi and xi+1 will have norm at least cos
(
π
n

)
. But the

norm of x, since x ∈ Bcos(π/n), is strictly less than cos
(
π
n

)
. Therefore we have that

||x|| < ||txi + (1− t)xi+1|| for all t ∈ [0, 1]. From this we determine that α+ β < 1.

Otherwise, if α+ β ≥ 1, we would have

||x|| = (α+ β)

∣∣∣∣∣∣∣∣ α

α+ β
xi +

β

α+ β
xi+1

∣∣∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣ α

α+ β
xi +

β

α+ β
xi+1

∣∣∣∣∣∣∣∣ > ||x||
which is clearly false. Thus x may be written as a convex combination of 0, xi and xi+1.

This is precisely what it means to belong to a sector of Pn. If x is in a sector of Pn, then x

belongs to Pn. �

Theorem 3.2. The functionals {µPn} converge to || · || pointwise on R2.

Proof. Let x ∈ R2 and let ε > 0. Since {1− cos(π/n)}∞n=3 → 0, choose N ∈ N such

that for all n ≥ N , 1− cos(π/n) < ε cos(π/3)
||x|| .

∣∣µPn(x)− ||x||
∣∣ = µPn(x)− ||x|| (3.1)

≤ µBcos(π/n)
(x)− ||x|| (3.2)

=
||x||

cos(π/n)
− ||x|| (3.3)

=
||x||

cos(π/n)
(1− cos(π/n)) (3.4)

≤ ||x||
cos(π/3)

(1− cos(π/n)) (3.5)

<
||x||

cos(π/3)

ε cos(π/3)

||x||
= ε (3.6)

Since Bcos(π/n) ⊂ Pn by Lemma 3.1, Lemma 2.8 tells us that µPn(x) ≤ µBcos(π/n)
(x), which

justifies lines 3.1 to 3.2. Lines 3.2 to 3.3 are justified by Lemma 2.9. For 3.4-3.5, Since

cosine is decreasing on [0, π], we get that 1
cos(π/n) ≤

1
cos(π/3) for any n ≥ 3. �

Remark. The 3 in the previous argument is really just there to emphasize there are no

regular 2-gons.
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It is easy to visualize what is happening in Lemma 3.1 because we are familiar

with the picture and the setting. In addition, it doesn’t take much justification to believe

that the arguments of the vertices of each Pn form a partition of S1. However, in higher

dimensions the corresponding statement is not obvious at all. Moreover, it is not clear

what a higher dimensional analogue would look like. In higher dimensions we will show

that if P is a convex set which contains the origin of a normed linear space, then there is a

homeomorphism between the boundary of P and the boundary of the unit ball in that

space. Also, we will show that a convex set is the union of its ‘sectors’.
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CHAPTER 4

PROPERTIES OF POLYTOPES IN LOCALLY CONVEX SPACES

The main result of this chapter is Theorem 4.8, which matches the observations

made about the regular polygons in Lemma 3.1. This theorem will justify extending the

methods used in R2 to Rn. And, possibly, since the theorems in this chapter are only

dependent on the topological vector space being normed, we may be able to recover some

results in infinite dimensional vector spaces. In order to get things done in this chapter we

will need the Hyperplane Separation Theorem, which is a famous corollary of the

Hahn-Banach theorem.

Theorem 4.1 (The Hyperplane Separation Theorem). Let P be a convex set in a locally

convex topological vector space X and let x be disjoint from P . Then there exists a

nonzero continuous linear functional f so that f(x) = α and so that for all y ∈ P we have

f(y) ≥ α. Alternatively, if x ∈ ∂P then there exists a nonzero continuous linear functional

f so that f(x) = α and for all y ∈ P we have f(y) ≥ α. A proof of this can be found in [4].

The following is an interesting result which is not true for most sets. An obvious

example of a set for which the following lemma would fail are the rationals. Clearly,

Q = R, and R is open, so Q◦ = R. However, Q◦ = ∅. While the result is probably known

folklore, I could not find it in the literature and so I have proved it myself.

Lemma 4.2. If P is convex, then P
◦

= P ◦

Proof. We will prove this by double inclusion. Let x ∈ P ◦. Then let Vx ⊂ P ◦ be an

open neighborhood containing x. But Vx ⊂ P ◦ ⊂ P ⊂ P means that x is an interior point

of P , hence P ◦ ⊂ P ◦. Now let x ∈ P ◦ and by way of contradiction suppose that x /∈ P ◦.

Then there is a ball around x completely contained in P , call it Vx ⊂ P . Since x /∈ P ◦, it

follows that x ∈ ∂P . Hence there is a point z ∈ Vx which is not in P . Since P is convex

and z is not in P , by Theorem 4.1 let f be a nonzero continuous linear functional such
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that f(z) = α with f(y) ≥ α for all y ∈ P . Since Vx is open, let Vz ⊂ Vx be a symmetric

neighborhood of z and let D = {y ∈ Vz : f(y) < α}. Then D is open, D ⊂ P and

D ∩ P = ∅. Therefore D ⊂ ∂P . But D is open, and boundaries have empty interior. Thus

D is empty. Now consider the functional g = f − α. Since f is not identically zero, g is

not identically zero. Hence, since g(z) = 0, let w ∈ Vz so that g(w) 6= 0 and let w′ = −w.

Then by linearity of g, g(w) = g(−w′) = −g(w′). Without loss of generality suppose that

g(w) > 0 and g(w′) < 0. Then in fact f(w) > α and f(w′) < α. Since Vz is symmetric and

w ∈ Vz, we get that w′ ∈ Vz. These last two statements guarantee that w′ ∈ D. This is a

contradiction. �

Lemma 4.3. If P is a convex set containing a neighborhood of 0 in a linear space X,

then x ∈ ∂P ⇐⇒ ({tx : 0 ≤ t < 1} ⊂ P ◦) ∧ (x /∈ P ◦).

Proof. (⇒) Let x ∈ ∂P . Since P contains a neighborhood of 0, let V ⊂ P be that

neigborhood. Now consider the set Cx,V =
⋃

0≤t<1 (tx+ (1− t)V ). By the convexity of P ,

Cx,V ⊂ P . By the continuity of addition and multiplication, Cx,V is open. Hence

Cx,V ⊂ P
◦
. By Lemma 4.2, Cx,V ⊂ P ◦. Since {tx : 0 ≤ t < 1} ⊂ Cx,V we are done.

(⇐) Suppose that ({tx : 0 ≤ t < 1} ⊂ P ◦) ∧ (x /∈ P ◦). Let tn < 1 be a sequence of

real numbers converging to 1. Then tnx converges to x. Since {tnx} ⊂ P ◦, that makes

x ∈ P . By supposition x /∈ P ◦. Hence x ∈ ∂P . �

Lemma 4.4. Let X be a normed linear space and let Br denote the ball of radius r with

respect to || · ||. If P is a bounded convex set containing a neighborhood of 0, then

f : ∂P → ∂B1 given by x/||x|| is a bijection.

Proof. Let P be convex and let 0 be an interior point of P . Suppose that

f(x) = f(y). If ||x|| = ||y|| then we are done. Hence suppose that ||x|| < ||y||. Then we

may write x = ||x||
||y||y. Since 0 ∈ P ◦, ||x||||y|| < 1 and y ∈ ∂P , by Lemma 4.3 we get that that

x ∈ P ◦, but x ∈ ∂P . This is a contradiction hence f is one-to-one. Now we wish to show

the onto property. Let x ∈ ∂B1. Since 0 is an interior point, let Bε be given such that

Bε ⊂ P ◦. Then ||εx|| = ε and thus εx is in P . Now, since P is bounded there is M > 0 so
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that ||y|| < M for all y ∈ P . In particular, L = {s ≥ 0 : sεx ∈ P ◦} is a bounded set of real

numbers. By convexity of P , L is actually an interval. Let s′ = supL and observe that

s′εx /∈ P ◦. Then L = [0, s′) and therefore 1
s′L = [0, 1). Hence

s′εx 1
s′L = {t(s′εx) : 0 ≤ t < 1}. But also we know that s′εx 1

s′L = εxL ⊂ P ◦. So by

Lemma 4.4 we get that s′εx ∈ ∂P . �

Instead of trying to parametrize angles in Rn or higher dimensions as we did in R2

in Chapter 4, we will think of a particular heading or direction as a point in the unit ball.

Since every point in our space admits a particular heading, which is a point in the unit

ball, by our previous theorem every point in our space can be projected onto the

boundary of a convex set sitting at the origin. Once we define what a face is, a definition

borrowed from [1], we will be able to describe our space as a union of ‘facial sectors’. Part

i) of Theorem 4.8 is known and can be found in [1] as well, but the proof was again too

brief for my level and without detail. Parts ii) and iii) of Theorem 4.8 are natural

corollaries of i) which I proved out of necessity and found more useful.

Definition 4.5. If P is convex, then a convex set F ( P is said to be a face of P

provided that for any pair x, y ∈ P and for any t ∈ (0, 1), if tx+ (1− t)y ∈ F , then

x, y ∈ F . The idea is that if F contains the interior point of some segment (a segment is

all convex combinations of two points), then it contains the whole segment.

Definition 4.6. The cone of a set S, given by cone(S), is the set containing all linear

combinations of elements in S where the scalars are chosen from [0,∞). That is,

cone(S) = {αx+ βy : x, y ∈ S ∧ α, β ≥ 0}

Definition 4.7. A convex hull of a set S, given by hull(S), is the set containing all

convex combinations of elements in S.

hull(S) = {tx+ (1− t)y : x, y ∈ S}
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Theorem 4.8 (Face-Hull Decomposition Theorem). Let X be a normed topological vector

space and let P be a bounded and convex set with 0 ∈ P ◦ and let F denote the collection of

faces of P . Then

i) ∂P =
⋃
F∈F F

ii) X =
⋃
F∈F cone(F )

iii) P =
⋃
F∈F hull(F ∪ {0})

Proof. To begin i) we will first show that if F is a face of P , then F ⊂ ∂P . So let

F be a face of P and let x ∈ F . Since F 6= P , let y ∈ P \ F . Suppose that for some t > 1

we have z = tx+ (1− t)y ∈ P . Then

1

t
z +

(
1− 1

t

)
y =

1

t
(tx+ (1− t)y) +

(
1− 1

t

)
y = x

Since F is a face, it means that z and y should also be in F . This is not possible. Hence,

if t > 1 then z = tx+ (1− t)y /∈ P . Then let {tn} be a sequence of real numbers which

converge to 1 from above. We have that {tnx+ (1− tn)y} is a sequence which is disjoint

from P but converges to x, hence x ∈ ∂P . For the other direction suppose that x ∈ ∂P .

By Theorem 4.1, there is a continuous linear functional f so that f(x) = α and for all

y ∈ P we have f(y) ≥ α. Let F = {y ∈ P : f(y) = α}. We want to show that F is in fact

in F . To that end, let y, z ∈ P and suppose that for some t ∈ (0, 1) we have

ty + (1− t)z ∈ F . By way of contradiction, suppose that one of these elements is not in F .

Without loss of generality, suppose that f(z) > α. Then by linearity of f ,

f(ty + (1− t)z) = tf(y) + (1− t)f(z) > tf(y) + (1− t)α ≥ tα+ (1− t)α = α

This is contrary to the fact that f(ty + (1− t)z) = α. Hence, since y and z are in P , the

only option is that f(y) = f(z) = α and therefore that y, z ∈ F .

ii) Let 0 ∈ P ◦ and let P be bounded. Since X is the whole space, it is obvious that

each cone(F ) ⊂ X, and so we only need to show the other direction, that
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X ⊂
⋃
F∈F cone(F ). Let 0 6= x ∈ X, as the case x = 0 is trivial. Then x

||x|| ∈ B1. By

Lemma 4.4, there is y ∈ ∂P such that y
||y|| = x

||x|| . By i), let F ∈ F such that y
||y|| ∈ F .

Since ||x|| is a nonnegative scalar and y ∈ F , x = ||x||y ∈ cone(F ).

iii) For the same reasoning expressed in the beginning of ii), we only need to show

that P ⊂
⋃
F∈F hull(F ∪ {0}). Let x ∈ P . Then by ii), let F ∈ F so that x ∈ cone(F ).

Then let y, z ∈ F and α, β ∈ [0,∞) so that x = αy + βz. If α+ β = 1 then we are done, as

x would be a convex combination of points in F ⊂ F ∪ {0}. If α+ β < 1 then we are also

done, as we can let γ = 1− (α+ β), then α+ β + γ = 1 and we have that

x = αy + βz + γ0 and thus x is again a convex combination of points in F ∪ {0}. Now, if

it is the case that α+ β > 1 then observe that

x

α+ β
=

α

α+ β
y +

β

α+ β
z

By the convexity of F , x
α+β ∈ F . But note that x, 0 ∈ P and that

x
α+β = 1

α+βx+ (1− 1
α+β )0. By the face property of F , both x and 0 are in F . From i) we

know that F ⊂ ∂P . However, 0 is an interior point of P . This is a contradiction. �
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CHAPTER 5

CONVERGENCE PROPERTIES OF MINKOWSKI FUNCTIONALS IN FINITE

DIMENSIONAL SPACES

In this chapter we will prove the main result of the paper, Theorem 5.9, which tells

us that we may sample points in B1 in order to approximate ||x|| as close as we wish using

the Minkowski functional. Moreover, the R2 case of regular inscribed polygons satisfies

the geometric criterion for selecting points from B1 that is outlined in the theorem. We

show that if {Pn}, a sequence of polytopes, converges to B1 ‘from the inside’

(Definition 5.7) then in fact we obtain the pointwise convergence of {µPn} to ||x||. Before

we do this, we establish Lemma 5.8 which restricts the setting to Rn. The first theorem is

obvious by Figure 5.1, but we present the details regardless.

Figure 5.1: Profile of Hyperplane Intersecting B1 in R2.

Theorem 5.1. If H is a plane of distance k < 1 from 0 which intersects B1 in Rn, then

H ∩B1 is an Rn−1 ball. Moreover, if the intersection is an Rn−1 ball, then the radius of

the ball has the following relationship:

k =
√

1− r2
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Proof. Let H with distance k from the origin intersect B1 in Rn. Without loss of

generality, write H as H = {(x1, · · · , xn) : xn = k}. If B1 is given as

B1 = {(x1, · · · , xn) : x21 + · · ·+ x2n ≤ 1}, then

H ∩B1 = {(x1, · · · , xn) ∈ R : (x21 + · · ·+ x2n ≤ 1) ∧ (xn = k)}

= {(x1, · · · , xn) ∈ R : (x21 + · · ·+ x2n−1 ≤ 1− k2) ∧ (xn = k)}

We recognize this set to be an Rn−1 ball of radius r =
√

1− k2, and thus k =
√

1− r2. �

Definition 5.2. The set P ∈ Rn is a polytope if there exists a finite set S ⊂ Rn so that

P = hull(S).

Theorem 5.3 (Unique Polytope Representation Theorem). Let P be a convex polytope in

Rn. Then there exists a minimal representation of P as the intersection of closed half

spaces generated by a finite number of supporting hyperplanes H1, · · · , Hk (supporting here

means that each Hi meets ∂P , but misses P ◦). The proof of this theorem can be found in

[2].

In Chapter 5 we decomposed general convex sets into faces. In the final theorem of

this chapter, we use a measurement of convex polytopes which depends on the facets

(intuitively, the ‘largest’ flat spots on a polytope). In order to be able to apply our

theorems from Chapter 5 we will need to connect faces to facets. In order to do this we

borrow the definition of facet, edge, and part of the argument of Lemma 5.6 from [3].

Definition 5.4. We say that F ∈ F is a facet of P if there is a unique hyperplane

containing F . Denote the set of facets F ′.

Definition 5.5. Let Ex, the edge determined by x, be the intersection of all facets

containing x.

Lemma 5.6. If F is a face, then it is contained in an edge.

Proof. For the sake of simple notation, let F ′x denote the collection of facets

which contain x as an element. Observe that Theorem 5.3 implies that every point in F
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belongs to at most finitely many facets. Therefore {
∣∣F ′y∣∣ : y ∈ F} ⊂ N, and hence this set

has a least element. Let x ∈ F so that |F ′x| is the least element. Let y ∈ F with y 6= x and

let z ∈ (x, y). If F ′ is a facet, hence also a face, then observe that if z ∈ F ′, then x, y ∈ F ′

also by the definition of face. So F ′z ⊂ F ′x ∩ F ′y which also implies that |F ′z| ≤ |F ′x|.

However, by our choice of x we know that |F ′x| ≤ |F ′z|. The double inequality gives that

|F ′x| = |F ′z|, but since there is containment one way we also get that F ′x = F ′z. Thus we

have F ′x = F ′z ⊂ F ′y. Therefore

y ∈ ∩F ′y ⊂ ∩F ′x = Ex

We have shown that F \ {x} ⊂ Ex. Thus F = {x} ∪ (F \ {x}) ⊂ Ex, and we are done. �

By the definition of edge, we already know that each edge is contained in a facet.

Hence, by the preceding lemma, each face belongs to a facet. Let P be a convex polytope

in Rn with vertices in B1. Each facet of P gives rise to a plane which intersects B1, and so

By Theorem 5.1, gives rise to the radius of the Rn−1 ball containing it, denoted r(F ′). Let

M(P ) = max{r(F ′) : F ′ ∈ F ′}. This measure is an important part of characterizing

sequences of polytopes {Pn} for which {µP ◦n} → || · || pointwise.

Definition 5.7. let B ⊂ Rn. We say that the sequence of sets {Pn} converge to B from

the inside if each Pn is a subset of B and if for every x ∈ B there is a natural number

N(x) so that for every n ≥ N(x), x ∈ Pn.

This next lemma is a statement which ‘ought to be true’ if someone were to look

at it and think about it for a second, but I don’t believe anyone has proved it yet. The

lemma is needed in Theorem 5.9. While in Theorem 5.9 it is used in order to show iii)⇒i),

a choice which I made in order to better showcase the analysis, I initially discovered that I

would need it when I was working in the other direction of iii)⇒ii).

Lemma 5.8 (Intermediate Polytope Lemma). For any ε > 0, in Rn there exists a finite

set of points S ⊂ B1+ε so that P ∗ = hull(S) and B1 ⊂ P ∗ ⊂ B1+ε.
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Proof. Let V represent the set of standard basis vectors in Rn and let D be the

convex hull of V ∪ (−V ). Then C =
{
ε
2D
◦ + x : x ∈ B1

}
is an open cover for B1. Let

C′ ⊂ C be the finite open cover of B1 guaranteed by compactness. Since C′ is finite, let

C′ = { ε2D
◦ + xi}ki=1. Let P ∗ = hull

(
ε
2(V ∪ (−V )) + {xi}ki=1

)
. Then for each 1 ≤ i ≤ k,

since ε
2D + xi is the convex hull of ε

2(V ∪ (−V )) + xi and since P ∗ is convex,

ε
2D + xi ⊂ P ∗. Since this is true for each such i, ∪ki=1

(
ε
2D + xi

)
⊂ P ∗. Since C′ is a cover

for B1 we get that

B1 ⊂
k⋃
i=1

( ε
2
D◦ + xi

)
⊂

k⋃
i=1

( ε
2
D + xi

)
⊂ P ∗

Now, we need to show that P ∗ ⊂ B1+ε. Let the standard basis vectors be labeled as

e1, . . . , en. Then P ∗ is the convex hull of the set of points

S =
{ ε

2
(−1)jel + xi : j = 0, 1 ∧ l = 1, . . . , n ∧ i = 1, . . . , k

}

Let x ∈ P ∗. Since P ∗ is the convex hull of S, x admits a representation as

x =

1∑
j=0

n∑
l=1

k∑
i=1

αj,l,i

( ε
2

(−1)jel + xi

)

where
∑1

j=0

∑n
l=1

∑k
i=1 αj,l,i = 1. Now Observe that

||x|| =

∣∣∣∣∣∣
∣∣∣∣∣∣

1∑
j=0

n∑
l=1

k∑
i=1

αj,l,i

( ε
2

(−1)jel + xi

)∣∣∣∣∣∣
∣∣∣∣∣∣

≤
1∑
j=0

n∑
l=1

k∑
i=1

αj,l,i

∣∣∣∣∣∣ ε
2

(−1)jel + xi

∣∣∣∣∣∣
≤

1∑
j=0

n∑
l=1

k∑
i=1

αj,l,i

(∣∣∣∣∣∣ ε
2

(−1)jel

∣∣∣∣∣∣+ ||xi||
)

≤
1∑
j=0

n∑
l=1

k∑
i=1

αj,l,i

( ε
2

+ 1
)
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=
( ε

2
+ 1
) 1∑
j=0

n∑
l=1

k∑
i=1

αj,l,i

=
ε

2
+ 1 < 1 + ε

Hence x ∈ B1+ε. �

Theorem 5.9. Let {Pn} be a sequence of convex polytopes with vertices in B1 and with

0 ∈ P ◦n for every n. The following are equivalent:

i) {M(Pn)} → 0

ii) {µP ◦n} → || · || pointwise.

iii) {P ◦n} → B1 from the inside.

Proof. i)⇒ii). First we need to show that for each n ∈ N, B√
1−M(Pn)2

⊂ P ◦n .

Hence let n ∈ N and let x ∈ B√
1−M(Pn)2

. By Theorem 4.8, let F be a face of Pn so that

x ∈ cone(F ). Then there are elements y, z ∈ F and positive scalars α, β so that

x = αy+ βz. Suppose that α+ β ≥ 1. It follows that ||x|| ≥ ||x||
α+β . But observe that x

α+β is

an element in F : x
α+β = α

α+β y + β
α+β z ∈ [y, z] ⊂ F . Since F is contained in some facet F ′,

the norms of elements in F are as large as the minimum distance between 0 and the plane

containing F ′. That is, for all w ∈ F , ||w|| ≥
√

1− r(F ′)2 as demonstrated in

Theorem 5.1. But note that M(Pn) ≥ r(F ′) by definition. And therefore

||x|| ≥ ||x||
α+ β

≥
√

1− r(F ′)2 ≥
√

1−M(P )2

which contradicts x ∈ B√
1−M(Pn)2

, thus α+ β < 1. Since x
α+β ∈ F , Theorem 4.8 tells us

that x
α+β ∈ ∂Pn. By Lemma 4.3, since α+ β < 1, (α+ β) x

α+β = x ∈ P ◦n . Now let x ∈ X

and let ε > 0. If x = 0 we are done, so suppose otherwise. Since {M(Pn)} converges to 0,{√
1−M(Pn)2

}
converges to 1 by continuity. Thus let n ∈ N so that for all n ≥ N we

have ||x||
||x||+ε <

√
1−M(Pn)2 ≤ 1. Then for all n ≥ N , by Lemma 2.8 and Lemma 2.9 we
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also have

∣∣µP ◦n (x)− ||x||
∣∣ = µP ◦n (x)− ||x||

≤ µB√
1−M(Pn)2

(x)− ||x||

=
||x||√

1−M(Pn)2
− ||x||

=
||x||

(
1−

√
1−M(Pn)2

)
√

1−M(Pn)2

<
||x||

(
1− ||x||

||x||+ε

)
||x||
||x||+ε

= ||x||
(

1− ||x||
||x||+ ε

)
||x||+ ε

||x||

= ||x||
(
||x||+ ε

||x||
− 1

)
= ||x||+ ε− ||x|| = ε

as desired.

ii)⇒ iii). Suppose that {µP ◦n} → || · || pointwise and by way of contradiction

suppose that {P ◦n} does not converge to B1 from the inside. By our assumptions, the

vertices of P ◦n are in B1, and thus P ◦n ⊂ B1 for all n. Then let x ∈ B1 so that for all

N ∈ N there is an n ≥ N so that x /∈ P ◦n . Without loss of generality, up to extraction of a

subsequence from {P ◦n}, suppose that for all n ∈ N x /∈ P ◦n . Then for any n, if t < 1,

x /∈ tP ◦n . Otherwise, if for some t < 1 we had x ∈ tP ◦n , we would have x
t ∈ P

◦
n . By

convexity, [0, xt ] ⊂ P
◦
n . Thus txt + (1− t)0 = x ∈ P ◦n , which isn’t possible. Hence for any n

we have µP ◦n (x) ≥ 1, and thus by assumption, ||x|| ≥ 1. But x ∈ B1, this is a contradiction.

iii)⇒ i). Suppose now that {P ◦n} converges to B1 from the inside but that, again

by way of contradiction, {M(Pn)} doesn’t converge to 0. Then there is some ε > 0 so that

for all N ∈ N there is an n ≥ N so that M(Pn) ≥ ε. Again, without loss of generality

assume that for each n we have M(Pn) ≥ ε. This means that each P ◦n has a supporting

hyperplane which is at most distance
√

1− ε2 from the origin. Then the closed half space

which doesn’t contain P ◦n meets the closed ball with radius 1+
√
1−ε2
2 . Hence, for each
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n ∈ N, let xn ∈ B 1+
√

1−ε2
2

\ P ◦n . Let x ∈ B
1+
√

1−ε2
2

be the accumulation point of {xn} and

let r ∈ R so that 1+
√
1−ε2
2 < r < 1. By Lemma 5.8, let S ⊂ B1 be a finite set of points so

that P ∗ = hull(S) with the property that Br ⊂ P ∗ ⊂ B1. By the convergence of {P ◦n} to

B1 from the inside, for each y ∈ B1 let Ny ∈ N denote the index for which if n ≥ Ny then

y ∈ P ◦n . Observe that {Ns : s ∈ S} is a finite subset of N. Hence let N = max{Ns : s ∈ S}.

Then for all n ≥ N we have S ⊂ P ◦n . By the convexity of each P ◦n , we have that

P ∗ = hull(S) ⊂ P ◦n . Let Vx ⊂ Br be a neighborhood of x. Since x is an accumulation

point of {xn}, let n0 ≥ N so that xn0 ∈ Vx. Then we have xn0 ∈ Vx ⊂ Br ⊂ P ∗ ⊂ P ◦n0
,

which is a contradiction. �
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CHAPTER 6

FUTURE WORK: INFINITE DIMENSIONAL SPACES

The most natural question to ask now is this: How can we extend Theorem 5.9 to

infinite dimensional vector spaces? Before we answer this question, we have to realize that

convex polytopes, taken as in Definition 5.2, do not behave the same way in infinite

dimensional spaces. The convex polytopes in our paper were always able to be chosen so

that they contain 0 as an element of the interior. Once we knew this, we leveraged the

geometry of the polytope in order to determine the size of the largest Rn ball that lies

inside. This fails in infinite dimensional spaces in the sense that if P in some infinite

dimensional vector space X is the convex hull of finitely many points, then P will be

completely contained in a finite dimensional subspace of X. Thus, P , even if it contains 0

as an element of the interior with respect to the subspace topology, will never contain a

ball that has the same dimension as X itself. So, we simply cannot keep our definition of

polytope as the convex hull of finitely many points. Attempts have been made to

generalize polytopes so that they can exist in infinite dimensional spaces while containing

0 as an interior point. From [3]:

Definition 6.1. Let P be a convex subset of X. Then P is a polytope if 0 ∈ P ◦ and if for

every collection of closed half spaces {Eα : α ∈ A} with P =
⋂
α∈AEα we have that x ∈ X

implies that there is a finite collection A′ ⊂ A with the property that x ∈
⋂
α∈A\A′ Eα.

Maserick proves in [3] that polytopes defined this way have many of the same

properties that polytopes do when defined as the convex hull of finitely many elements.

Maserick shows that every point in the boundary of P is contained in finitely many

hyperplanes from the collection {Hα : α ∈ A}, where Hα = ∂Eα from above. Maserick also

proves a statement which would appear to give hope: If X is a separable space, then if P

is a convex polytope it has at most countably many faces. This is interesting because

there are separable infinite dimensional vector spaces which do not even have a countable

basis, the vector space of sequences being an example.
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Unfortunately for those wishing to study Lp polytopes with countably many faces,

Maserick shows that if X is a separable infinite dimensional space, then it contains no

bounded polytopes. To add insult to injury, it is also concluded that in infinite

dimensional spaces where there are bounded convex polytopes, the unit ball is already a

convex polytope. Here ends the journey in this line of quesitoning. If the unit balls in

these spaces are already polytopes, then there is no reason to approximate them with

polytopes. Without further generalization, this question is exhausted.
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