The Honey Creek Member: A New Holocene Alluvial Stratigraphic Unit in the Midwest

Jeremy S. Dillon
University of Nebraska at Kearney

Rolfe D. Mandel
University of Kansas

Follow this and additional works at: http://scholarworks.uni.edu/jias

Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons

Recommended Citation
Available at: http://scholarworks.uni.edu/jias/vol113/iss3/3

This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in The Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
The Honey Creek Member: A New Holocene Alluvial Stratigraphic Unit in the Midwest

JEREMY S. DILLON¹ and ROLFE D. MANDEL²

¹Department of Sociology, Geography, and Earth Science, University of Nebraska at Kearney, Kearney, Nebraska 68849
²Kansas Geological Survey, University of Kansas, Lawrence, Kansas 66045

This paper describes the type locality and type section for the Honey Creek Member, a stratigraphic unit first recognized in the Honey Creek drainage in southeastern Nebraska. The alluvial chronology for Honey Creek basin is similar to the regional chronology of streams in the Midwest, and all of the formal members of the DeForest Formation occur in the basin. However, the lithology of one unit, the Honey Creek Member, does not correlate with any of the formally recognized members of the DeForest Formation. The Honey Creek Member is composed of grayish brown silt loam overbank facies coarsening downward to a gravelly loam channel facies with prominent, large-scale cross-bedding. At its type locality, aggradation of the Honey Creek Member occurred from ca. 3700 to ca. 600 ¹⁴C yrs. B.P. Paleochannels preserved within the unit suggest that aggradation was interrupted by at least two episodes of channel entrenchment and filling. The Honey Creek Member is significant because it has been identified within many basins across the eastern Plains. Recognition and detailed mapping of this unit facilitates our understanding of fluvial behavior during the late Holocene.

INDEX DESCRIPTORS: Honey Creek Member, Holocene alluvium, DeForest Formation.

BACKGROUND

The DeForest Formation was introduced in 1963 as a stratigraphic framework for a repeating sequence of Holocene alluvial deposits in western Iowa (Daniels et al. 1963). As originally defined, the DeForest Formation included five members that could be recognized on the basis of lithic characteristics and bounding unconformities (Daniels et al. 1963, Bettis 1990). Seven radiocarbon ages provided a general temporal framework for the members. From oldest to youngest, members of the DeForest Formation were named Soetmelk, Watkins, Hatcher, Mullenix, and Turton (Table 1). A sixth unit, post-settlement alluvium, was recognized but not given formal status within the model (Bettis 1990). The original model was restricted to the Loess Hills region of western Iowa (Daniels et al 1963, Bettis 1990).

Bettis and Littke (1987) and Bettis (1990) refined the DeForest Formation with four significant modifications (Table 1). First, through investigations in various basins, including more than 130 radiocarbon dates, the DeForest Formation was extended to include Holocene alluvial deposits throughout Iowa. Second, the Soetmelk Member, as defined in 1963, was subsequently recognized as late Wisconsinan loess and related alluvium in large valleys (Bettis 1990), and thus it was excluded from the model. In some reports these late Wisconsinan sediments were informally named “pre-Gunder” deposits (e.g., Bettis et al. 1992). However, this nomenclature is no longer used (Bettis, 2005, personal communication). Third, the Watkins and Hatcher members were re-assigned as beds within the newly established Gunder Member, while the Mullenix and Turton members were re-assigned as beds within the new Roberts Creek Member (Bettis and Littke 1987, Bettis 1990). While the Gunder and Roberts Creek members are recognized throughout
the state of Iowa, they are only subdivided into beds in the area of thick loess in the western part of the state. This area, known as the Loess Hills region of Iowa, is a narrow band (4–16 km wide) along the margin of the Missouri River valley, and includes loess deposits up to 62 m thick (Bettis et al. 1986, Prior 1991). In the Loess Hills region, streams tend to produce vertically stacked gulley fills that allow for detailed mapping of individual beds (Bettis 1990). Finally, two new members, the Corrington and Camp Creek members were defined. The Corrington Member was introduced to include Holocene alluvial fan deposits and colluvium along valley margins. The Camp Creek Member was introduced to include distinct deposits composed of Historic sediment (Bettis and Littke 1987, Bettis 1990). In addition, Bettis et al. (1996) modified the DeForest Formation to accommodate the landform-sediment assemblages associated with late Wisconsinan glacial tills of the Des Moines Lobe in central Iowa. In this paper, we focus on alluvium derived mostly from loess, and hence use the nomenclature of Bettis (1990).

Although small alluvial fans and colluvial aprons (the Corrington Member) are present within Honey Creek basin, our investigation focuses on terrace and floodplain fills. Detailed descriptions of the lithic and soil characteristics of the DeForest Formation as defined in western Iowa are provided in Bettis (1990), in southeastern Nebraska by Mandel and Bettis (2001), in eastern Iowa by Bettis et al. (1992), and in southeastern Iowa by Bettis and Littke (1987:Table 1, p. 15).

ENVIRONMENTAL SETTING

Honey Creek drainage basin is located in southeastern Nebraska (Figs. 1,2), which is part of the Glaciated Central Lowlands of North America (Madole et al. 1991). In this region, upland surfaces are underlain by late Quaternary loess and alluvium and Pre-Illinoian tills and alluvium resting on Paleozoic bedrock (Reed and Dreeszen 1965, Bettis et al. 1986). Streams occupy deep valleys that are cut into bedrock and partially filled with Pleistocene and Holocene alluvium.

Table 1. The DeForest Formation as defined by Daniels et al. (1963), and re-defined by Bettis and Littke (1987) and Bettis (1990).

<table>
<thead>
<tr>
<th>Daniels et al. (1963)</th>
<th>Approximate Age(^1)</th>
<th>Bettis (1990)</th>
<th>Approximate Age(^2,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postsettlement Alluvium</td>
<td>Historic</td>
<td>Camp Creek Member</td>
<td>Small Valleys(^4) ((<4th order))</td>
</tr>
<tr>
<td>Turton Member</td>
<td>250–76</td>
<td>Roberts Creek Member</td>
<td>0150</td>
</tr>
<tr>
<td>Mullenix Member</td>
<td>1,000 – >250</td>
<td>Turton bed</td>
<td>800–150</td>
</tr>
<tr>
<td>Hatcher Member</td>
<td>2,020–1,800</td>
<td>Mullenix bed</td>
<td>1,800–1,000</td>
</tr>
<tr>
<td>Watkins Member</td>
<td>11,000–2,020</td>
<td>Corrington Member(^4)</td>
<td>4,020–1,800</td>
</tr>
<tr>
<td>Soetmelk Member</td>
<td>14,300–11,000</td>
<td>Gunder Member</td>
<td>3,500–2,000</td>
</tr>
</tbody>
</table>

\(^1\) Radiocarbon years before present, based upon 7 radiocarbon ages reported in Daniels et al. (1963)
\(^2\) Radiocarbon years before present, from Bettis (1990)
\(^3\) Note time-transgressive nature of fills
\(^4\) Stream orders defined after Strahler (1952)
\(^5\) Alluvial fan deposits where small valleys merge with large valleys
The vegetation in the region is mapped as a mosaic of oak-hickory, steep slopes, in ravines, and along stream channels. The tall grass forest and tall-grass prairie (Kuchler 1964, Kaul and Rolfsmeier 1993) have a mean annual precipitation of 200-300 cm (Kerl 1985). The pre-settlement climate (Thornthwaite 1948) characterized by cold winters and warm, humid summers. The mean monthly temperature for the period 1951-80 (Kerl 1985) was approximately 25.3°C in July (Kerl, 1985). The mean annual precipitation at the nearby Auburn, Nebraska weather station is 86.6 cm. The pre-settlement vegetation in the region is mapped as a mosaic of oak-hickory forest and tall-grass prairie (Kuchler 1964, Kaul and Rolfsmeier 1993, Baker et al. 2000). The oak-hickory forest is located on steep slopes, in ravines, and along stream channels. The tall grass prairie occurs on uplands and gentle slopes with silty and clay-rich soils (Kerl 1985, Kaul and Rolfsmeier 1993).

METHODS

Alluvial landforms were mapped using aerial photographs and USGS 7.5 minute topographic maps. Extensive streambank exposures were examined in the field. Six sections were selected for detailed description and sampling (Fig. 2). A Giddings hydraulic soil probe was used to collect 14 continuous, 5 cm-diameter cores along four transects. Lithologic descriptions of selected exposures and cores follow standard methods and terminology outlined by Allen (1970) and Birkeland (1984, 1999), and descriptions of surface and buried soils follow standard soil terminology (Soil Survey Staff 1999). Samples from selected alluvial deposits and soil horizons were submitted to the Kansas State University Soil Characterization Laboratory for particle-size analysis and determination of total carbon content. Particle-Size analyses were conducted using the modified pipette method of Kilmer and Alexander (1949) and Soil Survey Staff (1982). Total carbon was determined by combustion using procedures described in Tabatabai and Bremner (1970). Wood, charcoal, and bulk sediment samples were submitted to the University of Texas Radiocarbon Laboratory (Table 2). The samples were pretreated with 2% HCl and 2% NaOH prior to radiocarbon analyses. At the time these samples were analyzed (1991), 13C correction was not standard practice unless specifically requested. However, with the exception of two dates, all radiocarbon ages are 13C corrected.

RESULTS

Four lithologically distinct Holocene stratigraphic units are recognized in the upper portions of the Honey Creek valley fill. The units are identified on the basis of color, primary sedimentary structures, pedogenic development, and stratigraphic position. Three of the units are correlated with the Ginder, Roberts Creek and Camp Creek members of the DeForest Formation. The fourth unit consistently includes colors, primary sedimentary and pedogenic structures that, in combination, are not described in other members of the DeForest Formation. This unit is the newly established Honey Creek Member. Physical and pedogenic properties of the DeForest Formation, along with their temporal relationships as they occur in Honey Creek basin, are summarized in Table 3.

Although the Honey Creek and Roberts Creek members both occur as fills inset into the Ginder Member, the stratigraphic relationship between them is not clearly revealed in Honey Creek basin. However, the Honey Creek Member comprises most of the late Holocene fill in the lower and middle portions of the basin, while the Roberts Creek Member is only identified in the upper reaches of the drainage, and as discrete gully fills which extend from small, upland tributaries across the T-1 surface. In addition, radiocarbon ages from the basin suggest that the Honey Creek Member is older than the Roberts Creek Member.

Lithology and Bedding Features

At its type section (Figs. 3b, 4, and Table 4) the Honey Creek Member is composed of brown (10YR 5/3-4/3) to dark grayish brown (10YR 4/2) and dark gray (10YR 4/1) silt loam and gravelly loam. Two alluvial facies are consistently present in exposures of the Honey Creek Member. The lower facies includes bedded silt loam, sandy loam, and poorly sorted gravelly loam with lenticular, loamy gravel beds up to 1 m thick. The bedding
Fig. 3. (a) Honey Creek basin with steep north-facing bluffs. View is to the SE. (b) Type section of the Honey Creek Member at Site 3a. Note the grayish brown colors and prominent, large-scale cross bedding. (c) Honey Creek Member, oxidized and reduced Gunder Member, and bedrock at Site 3b. Note the clear, erosional contact between the Honey Creek and Gunder members. (d) Camp Creek, Roberts Creek and Gunder members at Site 6. Note the massive, very dark gray alluvium of the Roberts Creek Member. (e) Roberts Creek gully fill inset into Gunder Member at Site 4. Again, note the dark color and lack of cross bedding in the Roberts Creek Member.
The lithology and bedding features of the Honey Creek Member typically includes large-scale trough cross-stratification and some epsilon cross-stratification (Figs. 3b and 3c). Climbing ripple laminations are also common in the bedded facies. Fine-grained beds in the lower facies are typically calcareous with reduced colors, including pale olive (5Y6/3), olive (5Y4/3) and very dark gray (5Y3/2). Faint, light olive-brown (2.5Y5/4) and dark gray (5Y3/2) matrix colors are common, with wood of often occurring as logs greater than 5 cm in diameter.

Most significant to the comparison is the poorly sorted, large scale cross-stratification in the lower portion of the Honey Creek Member (Figs. 3b, 3c). This facies is identified at exposures throughout Honey Creek Basin and in basins across the region (e.g., Dillon 2004b, Mandel and Bettis 2003), yet other members of the DeForest Formation do not include such bedding styles. Channel facies and lower portions of the Roberts Creek and Gunder members mostly include horizontally bedded sand and silt, or thin sand and gravel lenses (Bettis 1990, Mandel and Bettis 2001). Sections that exhibit trough cross-bedding typically include thin beds of clean, well-sorted sands and gravels that grade upward into the fine-grained facies with the characteristic dark gray or yellowish brown matrix colors (Bettis, 1990, Mandel et al. 1992). Observations also apply to the Mullenix bed of the Roberts Creek Member, which is only mapped in vertically-stacked gully fills in the thick loess region of western Iowa (Bettis 1990). Along with its lithologic differences, the Honey Creek Member occurs over a much broader area.

Gunder Member alluvium includes more strongly oxidized matrix colors compared to the Honey Creek Member (Table 3; Figs. 3c, 3d, 3e). The Roberts Creek Member, on the other hand, consists of massive silt loam with much lower chroma and value (i.e., it is darker because of a higher organic matter content) compared to the Honey Creek Member (Table 3; Figs. 3d, 3e). Thus, the typical grayish brown color of the Honey Creek Member is intermediate between the yellowish brown of the Gunder Member and the dark gray of the Roberts Creek Member.

The soils developed in the Honey Creek and Roberts Creek members are morphologically similar. However, like their respective alluvial parent materials, the soil formed in the Roberts Creek Member is darker and typically not as thick as the soil formed in the Honey Creek Member. Both soils show a lesser degree of development (A-Bw profiles) than soils formed in the Gunder Member, which typically has an argillic (Bt) horizon (Table 3). The overbank facies of the Camp Creek Member is readily distinguished from the Honey Creek Member by its typically higher chroma, thin, horizontal bedding, and minimal degree of soil development (Table 3). Soils in the Camp Creek Member are Entisols with weak A-C horizonation. In addition, there is usually a notable difference in field consistence between the soft, friable Camp Creek Member and the hard, friable older members.
Table 3. Physical, pedological, and chronological properties of the DeForest Formation in Honey Creek Basin, southeastern Nebraska.

<table>
<thead>
<tr>
<th></th>
<th>Gunder Member</th>
<th>Honey Creek Member</th>
<th>Roberts Creek Member</th>
<th>Camp Creek Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>unknown but > 6 m</td>
<td>typically 3 to > 6 m</td>
<td>1–2 m</td>
<td>typically < 1 m</td>
</tr>
<tr>
<td>Dry, Non-Reduced</td>
<td>yellowish brown (10YR5/6) to brown (10YR5/3)</td>
<td>brown (10YR5/3-4/3) to dark grayish brown (10YR4/2) and dark gray (10YR4/1)</td>
<td>very dark gray (10YR3/1) to grayish brown (10YR5/2)</td>
<td>brown to dark brown (10YR5/3-3/3) and dark grayish brown (10YR4/2)</td>
</tr>
<tr>
<td>Matrix Color</td>
<td>silt loam and sandy loam, few sand lenses</td>
<td>silt loam, sand loam and gravelly loam; few lenticular gravel lenses</td>
<td>silt loam</td>
<td>silt loam, sand and gravel</td>
</tr>
<tr>
<td>Texture</td>
<td>silt loam and sandy loam, few sand lenses</td>
<td>silt loam, sand loam and gravelly loam; few lenticular gravel lenses</td>
<td>silt loam</td>
<td>silt loam, sand and gravel</td>
</tr>
<tr>
<td>Bedding Styles</td>
<td>mostly massive with some thin, discontinuous horizontal bedding and small-scale cross-bedded sand and gravel lenses</td>
<td>large-scale trough cross-stratification and epsilon cross-stratification grading upward to massive. Climbing-ripple lamination common.</td>
<td>mostly massive with some thin horizontal bedding and laminated silt; common rip-up clasts from underlying Gunder alluvium</td>
<td>thin, horizontal bedding with cross bedding in bar deposits</td>
</tr>
<tr>
<td>Horizonation</td>
<td>A-Bt-BC-C</td>
<td>A-Bw-BC-C</td>
<td>A-Bw-BC-C</td>
<td>A-C</td>
</tr>
<tr>
<td>Thickness of A</td>
<td>>31 cm to >90 cm</td>
<td>>27 cm to >56 cm</td>
<td>>20 cm to >58 cm</td>
<td>5–25 cm</td>
</tr>
<tr>
<td>Horizon(s)</td>
<td>B horizon(s)</td>
<td>B horizon</td>
<td>B horizon</td>
<td>B horizon</td>
</tr>
<tr>
<td>Structure</td>
<td>moderate fine prismatic parting to fine angular blocky, and moderate fine subangular blocky. Also coarse prisms and slabs similar to loess</td>
<td>weak, fine and medium subangular blocky</td>
<td>weak, fine prismatic parting to fine subangular blocky</td>
<td>no B horizon - weak, coarse platy structure common in A and C horizons</td>
</tr>
<tr>
<td>Mottling (oxidized</td>
<td>brown (10YR5/3), yellowish brown (10YR5/4-5/6), grayish brown (10YR5/2)</td>
<td>brown (10YR5/3-5/4), dark yellowish brown (10YR4/6), dark brown (10YR3/4)</td>
<td>dark gray (10YR3/1-3/2) and brown to yellowish brown (10YR5/3-5/4)</td>
<td>none</td>
</tr>
<tr>
<td>Mottling (reduced</td>
<td>dark brown (10YR3/3), dark gray (5Y4/1), olive yellow (2.5Y6/6), light olive gray to pale olive (5Y6/2-6/3)</td>
<td>light olive brown (2.5Y5/4-6/4), dark reddish brown (5Y3/3-5/4),</td>
<td>not observed</td>
<td>none</td>
</tr>
<tr>
<td>Age</td>
<td>ca. 8,560 to ca. 5,240 yr B.P.</td>
<td>ca. 3,700 to ca. 600 yr B.P.</td>
<td>ca. 1,200 to 500 yr B.P.</td>
<td>less than ca. 600 yr B.P.</td>
</tr>
</tbody>
</table>

1A horizon thickness does not include transitional, AB horizons, and hence represent minimum ranges
2All ages are in uncalibrated radiocarbon years before present. Ages of members based upon data collected in Honey Creek Basin.
of the DeForest Formation. Finally, channel facies, and occasionally the overbank facies of the Camp Creek Member include re-deposited Historic artifacts such as brick fragments and colored glass, which are absent in older members.

Stratigraphic Position

The Honey Creek Member is typically identified in the lower and middle reaches of trunk streams. At the type locality, it occupies a broad paleovalley (approximately 100 m wide and 4 to 7 m deep) with multiple channel fills cut into the Gunder Member (Figure 5). The bedding style, facies relationships and geometry of the Honey Creek Member indicate an actively migrating stream, consistent with its broad, shallow valley cut into older sediments (e.g., Brakenridge 1984).

Lower boundary

At the type locality, and in basins throughout the region, the lower boundary of the Honey Creek Member is an erosional, disconformable contact with the underlying Gunder Member (Figs. 3c, 5). The erosional nature of the contact is verified through radiocarbon age determinations and the common presence of krotovina and pedogenic features in the underlying Gunder Member, indicating that a former soil has been stripped (e.g., Bettis 1990, Dillon 1992, Mandel and Bettis 2001). Although it is often inset into the Gunder Member, the Honey Creek Member has also been observed in contact with older deposits such as late Wisconsinan loess and alluvium, and bedrock (Fig. 3c). It has not been seen in contact with the Roberts Creek Member. Instead, both deposits occur as separate channel fills cut into the Gunder Member (e.g., Mandel and Bettis 2001, 2003, Dillon 2004b).

Upper boundary

The upper boundary of the Honey Creek Member is typically marked by a prominent soil with a cumulic A horizon and a Bw (cambic) horizon. A similar soil occurs in the upper portions of the Roberts Creek Member, and can be traced throughout Honey Creek basin. Many earlier reports informally refer to this soil as the "pre-settlement soil" (e.g., Bettis 1990).
Table 4. Detailed description of the type section for the Honey Creek Member of the DeForest Formation.

Location: se, nw, nw, ne, Section 34, T. 6N, R. 15E, Nemaha County, Nebraska
Landscape Position: T-1 terrace exposure along south-facing cutbank
Estimated Slope: <1%
Vegetation: Formerly plowed field now in pasture
Described by: Jeremy S. Dillon
Date Described: 10/15/91

Comments: This profile is shown in Figure 3b. The contact between the Honey Creek Member and the underlying reduced, Gunder Member is erosional and irregular across the section. The thickness of the Honey Creek Formation at this locality ranges from approximately 5 to 8 meters.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Soil Horizon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>Ap</td>
<td>DEFOREST FORMATION - CAMP CREEK MEMBER</td>
</tr>
<tr>
<td>15-70</td>
<td>C</td>
<td>DEFOREST FORMATION - CAMP CREEK MEMBER</td>
</tr>
<tr>
<td>70-95</td>
<td>2Ab</td>
<td>DEFOREST FORMATION - HONEY CREEK MEMBER</td>
</tr>
<tr>
<td>95-117</td>
<td>2Ab2</td>
<td>DEFOREST FORMATION - HONEY CREEK MEMBER</td>
</tr>
<tr>
<td>117-155</td>
<td>2ABb</td>
<td>DEFOREST FORMATION - HONEY CREEK MEMBER</td>
</tr>
<tr>
<td>155-183</td>
<td>2Bwb</td>
<td>DEFOREST FORMATION - HONEY CREEK MEMBER</td>
</tr>
<tr>
<td>183-210</td>
<td>2Bw2b</td>
<td>DEFOREST FORMATION - HONEY CREEK MEMBER</td>
</tr>
<tr>
<td>210-255</td>
<td>2Bw3b</td>
<td>DEFOREST FORMATION - HONEY CREEK MEMBER</td>
</tr>
<tr>
<td>255-277</td>
<td>2BCb</td>
<td>DEFOREST FORMATION - HONEY CREEK MEMBER</td>
</tr>
<tr>
<td>277-330</td>
<td>2Cb</td>
<td>DEFOREST FORMATION - HONEY CREEK MEMBER</td>
</tr>
</tbody>
</table>
Table 4. Continued

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Soil Horizon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>330-490</td>
<td>2Cb2</td>
<td>Grayish brown (10YR5/2), dark gray (10YR4/1) and very dark gray (10YR3/1) stratified silt loam; very dark gray (10YR3/1) moist; common dark brown to reddish brown (7.5YR3/4 - 5YR3/4) stains; common light olive brown (2.5Y5/4) mottles; pale brown (10YR6/3) laminae throughout; many charcoal flecks; common gastropods and pelecypods; bedding thickens downward; lower 50 cm include poorly-sorted loamy gravel beds; at 410 cm to 490 cm poorly sorted, calcareous loamy gravel; clasts are mostly derived from local bedrock (calcareous siltstone, fine sandstone, limestone); loamy matrix pale olive (5Y6/3), dark reddish brown (5YR3/3), and dark gray (10YR4/1) with common dark reddish brown (5YR3/3) stains; strongly effervescent; abrupt, irregular lower boundary.</td>
</tr>
<tr>
<td>490-550</td>
<td>2C3bg</td>
<td>Bedded olive to very dark gray (5Y3/3-3/0) silt loam and gravelly loam; light brownish gray laminae in places; common dark yellowish brown (10YR4/4) to dark brown (7.5YR3/3) mottles; loamy gravel beds include common dark reddish brown (5YR3/3) and black (7.5YR2/0) FeO and MnO stains; common gastropods and pelecypods; olive silt slightly effervescent; dark gray silt non effervescent, gravel beds strongly effervescent; abrupt, irregular boundary.</td>
</tr>
<tr>
<td>550-620</td>
<td>3Cbg</td>
<td>Yellow (2.5Y6/6) to brownish yellow (10YR6/6) silt loam; dark gray to olive gray (5Y4/1-5/2) moist; common olive (5Y6/5), black (2.5Y2/0), and few dark reddish brown (5YR3/3) mottles; massive; lower boundary below water level.</td>
</tr>
</tbody>
</table>

The Honey Creek Member is frequently mantled by overbank facies of the Camp Creek Member. The overbank facies of the Camp Creek Member may bury the soil formed in the upper portion of the Honey Creek Fill, or at some localities, the soil has been truncated and there is an erosional contact. Where the Camp Creek Member is absent, the soil in the upper portion of the Honey Creek Member is the surface soil on the modern landscape.

The stratigraphic relationship between the Roberts Creek and Honey Creek members is not clearly revealed in Honey Creek basin. However, at the type locality the Honey Creek Member occurs in the lower and middle portions of the basin, while the Roberts Creek Member is only identified in the upper reaches of the drainage, and as discrete gully fills which extend from small, upland tributaries across the T-1 surface. In addition, more recent studies indicate that both the Honey Creek and Roberts Creek members occur as discrete fills set into the Gunder Member (e.g., Dillon 2000b, Mandel and Bettis 2003). Finally, radiocarbon ages indicate that the Honey Creek Member is older than the Roberts Creek Member.

Chronology

Eleven radiocarbon ages were obtained on various materials from Honey Creek basin (Table 2). Six radiocarbon ages were determined on materials from the Honey Creek Member. At Site 3a, the type section yielded four superposed ages (Fig. 4). Wood recovered from poorly-sorted, cross-bedded sediments near the base of the section (about 7 m below the T-1 surface) yielded an age of 3,690 ± 70 yr B.P. Charcoal collected at the transition between the bedded lower facies and the overlying fine-grained, massive facies was dated at 2,900 ± 60 yr B.P. Also, two bulk samples were obtained from the buried soil in the upper portion of the deposit. Laboratory pretreated, decalcified organic carbon from the lower 12 cm of the buried A horizon yielded a radiocarbon age of 1,860 ± 60 yr B.P., while the upper 12 cm of the A horizon yielded an age of 720 ± 70 yr B.P. In addition, wood collected from the base of a concave channel fill located approximately 100 m upstream from the type section yielded a radiocarbon age of 1,870 ± 60 yr B.P. Finally, charcoal...
Fig. 6. Soil-stratigraphic relationships for a boundary-stratotype of the Honey Creek Member at site 5.

collected from the lower facies of the Honey Creek fill (Fig. 6) at Site 5 yielded a radiocarbon age of 1,690 ± 90 yr B.P. At this location, and at sections farther upstream, the erosional contact between the Honey Creek fill and the underlying, yellowish brown oxidized Gunder alluvium is clearly visible.

The Honey Creek Member consistently yields late Holocene (ca. 3700 to 600 14C yrs B.P.) ages within drainage basins across a wide area (Dillon and Mandel 1997, Mandel and Bettis 2003, Dillon 2004b). These ages are also supported by diagnostic archeological materials recovered from the unit (e.g., Mandel 1994, Mandel and Bettis 2001). These late Holocene ages are further supported by the degree of soil development in the upper portion of the deposit. In the Midwest, many studies have demonstrated that soils in alluvium with A-Bw profiles are typically less than about 2,000 years old, while soils with A-Bt horzonation are typically older (e.g., Bettis 1990, 1992, Mandel and Bettis 1995, 2001). The late Holocene age of the Honey Creek Member and the well-established Holocene chronology of the DeForest Formation are confirmed by numerous studies in basins across the eastern Great Plains region (e.g., Mandel and Bettis 1995, 2001, 2003, Dillon 2004b).

DISCUSSION

When the Honey Creek fill was initially described in southeastern Nebraska, the regional extent of the deposit was unknown; thus it was only recognized as an informal unit (Dillon 1991, 1992). Subsequent investigations in eastern Nebraska (e.g., Mandel 1994, 1999, Mandel and Bettis 2001, Dillon 2004a,b), the thick loess region of western Iowa (Bettis, personal communication), and eastern Kansas (Mandel and Bettis 2001, 2003) demonstrated its regional extent and consistent lithographic, stratigraphic, and chronologic relationships. Thus it is adopted as a Member of the DeForest Formation. Its recognition based upon objective lithologic characteristics is consistent with the definition of a lithostratigraphic unit (Dillon et al. 2001). The DeForest Formation was initially adopted for Holocene alluvial deposits in Iowa. However, the DeForest Formation (and the newly-defined Honey Creek Member) has been identified in drainage basins across a much broader region. As stratigraphic units do not end at state boundaries (Mandel and Bettis 1995), the DeForest Formation has been recognized in these states as well. Thus the Honey Creek fill was recognized as a formal, mappable member of the DeForest Formation.

As with the other members of the DeForest Formation, the consistent nature of the Honey Creek Member allows for its application to problems other than stratigraphy. For example, its distinctive lithic characteristics make it readily identifiable in the field; hence its recognition allows for rapid assessment of the likely age and potential significance of buried cultural materials (e.g., Mandel and Bettis 2001, 2003, Dillon 2004b). Plant macrofossils and other organic materials recovered from the Honey Creek Member have been used to reconstruct late Holocene paleoenvironments that concur with the stratigraphic relationships (e.g., Baker 2000, Baker et al. 2000).

In addition, the fact that the Honey Creek Member occurs over a wide area implies that regional-scale processes affected its distinctive lithology, rather than basin-specific variables. Hence, additional mapping of its distribution and relationship with other units (especially the Roberts Creek Member) may shed light upon fluvial processes and responses to various internal and external driving forces during the late Holocene.

CONCLUSIONS

The newly established Honey Creek Member is a lithologically distinct, objectively-mappable, late Holocene deposit, which consistently occurs in conjunction with, and within the framework of the DeForest Formation. The Honey Creek Member is significant because it occurs over a broad area of the Midwest, including eastern Nebraska and Kansas, northern Missouri, and in the thick loess area of western Iowa (e.g., Dillon 1992, Mandel and Bettis 2001, 2003). Hence, recognition and detailed mapping of this stratigraphic unit facilitates our understanding of fluvial behavior during the late Holocene.

ACKNOWLEDGEMENTS

This research was initiated by the senior author as a Master's thesis in the Department of Geography and Geology at the University of Nebraska at Omaha. Funding was provided by the University of Nebraska at Omaha through the Graduate Thesis
Scholarship (1989), University Committee on Research Thesis Grant (1989), and Rhoden Summer Graduate Scholarship (1991). Additional funding was provided through the Nebraska Geological Society Yarkola-Edwards Scholarship. Finally, funding for dissemination was provided by the University of Nebraska at Kearney. The support provided by these institutions is greatly appreciated. This work has continued through the many projects completed by Rolfe Mandel and Arct Bettis, and through recent projects conducted in eastern Nebraska by the senior author.

LITERATURE CITED

Dillon, J. S. 1992. Holocene alluvial stratigraphy and landscape development in Honey Creek basin, Nemaha County, Nebraska. Unpubl. M.A. Thesis, Department of Geography-Geology, University of Nebraska at Omaha, Omaha.

